SINTESIS BIOKARBON BATANG JAGUNG YANG DIDOPING NITROGEN SEBAGAI ELEKTRODA KAPASITOR ELEKTROKIMIA

Authors

  • Olly Norita Tetra Departemen Kimia, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Awfa Joti Aghna Kamiko Departemen Kimia, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Nabila Putri Yusni Chairunnisa Departemen Kimia, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Andalas

Keywords:

biokarbon aktif, batang jagung, amonia, urea, kapasitor elektrokimia

Abstract

Biokarbon dan unsur nitrogen untuk penyimpanan energi kapasitor eleketrokimia telah menjadi salah satu  penelitian yang banyak dilakukan karena luas permuakaan yang tinggi dan konduktivitas yang tinggi. Dalam penelitian ini biokarbon aktif berhasil disintesis dengan metode pendekatan karbonisasi sederhana menggunakan batang jagung sebagai prekusor. Biokarbon kemudian didoping nitrogen (amonia atau urea) dengan tujuan meningkatkan kapasitansi spesifik. Biokarbon aktif batang jagung yang didoping dengan amonia dan urea memiliki luas permukaan berturut-turut sebesar 4,6919 m2 g-1 dan 3,7936 m2 g-1, dengan kapasitansi spesifik masing-masing pada penambahan amonia 8,89 F g-1 dan pada penambahan urea sebesar 6,02 F g-1. Biokarbon aktif batang jagung yang didoping amonia dan urea memiliki kinerja yang baik sebagai elektroda kapasitor elektrokimia.

References

Anisyah, Arnelli, & Astuti, Y. (2021). SMAC-SLS) dari Tempurung Kelapa Menggunakan Aktivator ZnCl2 dan Gelombang Mikro sebagai Adsorben Kation Pb(II. In Greensphere: J. Environ. Chem (Vol. 1).

De, S., Acharya, S., Sahoo, S., & Chandra Nayak, G. (2020). Present status of biomass-derived carbon-based composites for supercapacitor application. Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, 373–415. https://doi.org/10.1016/B978-0-12-819552-9.00012-9

Diaz, E., Sanchis, I., Coronella, C. J., & Mohedano, A. F. (2022). Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption. Resources, 11(5). https://doi.org/10.3390/resources11050043

Elaiyappillai, E., Srinivasan, R., Johnbosco, Y., Devakumar, P., Murugesan, K., Kesavan, K., & Johnson, P. M. (2019). Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science, 486, 527–538.

Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., … Grace, A. N. (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Scientific Reports, 9(1).

Hao, P., Zhao, Z., Tian, J., Li, H., Sang, Y., Yu, G., … Umar, A. (2014). Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale, 6(20), 12120–12129.

Nnorom, O. O., & Onuegbu, G. C. (2019). Authentication of Rothmannia whitfieldii Dye Extract with FTIR Spectroscopy. Journal of Textile Science and Technology, 05(02), 38–47. https://doi.org/10.4236/jtst.2019.52004

Nurdin, A., Harahap, H., & Fahmi, A. (2022). Indonesian Journal of Chemical Research Production Process of Large Pore Size Activated Carbon from Palm Kernel Shell using Sodium Chloride as An Activator. J. Chem. Res, 10(1), 8–13. https://doi.org/10.30598//.ijcr2022.10-ahm

Nurul Hidayu, Erman Taer, & Sugianto. (2016). Pengaruh Penambahan Surfaktan Sodium Dodecyl Sulfate Pada Sifat Fisis Elektroda Superkapasitor Dari Karbon Tempurung Kelapa. Repository Unri, 1–9.

Sekhon, S. S., & Park, J. S. (2021, December 1). Biomass-derived N-doped porous carbon nanosheets for energy technologies. Chemical Engineering Journal, Vol. 425. Elsevier B.V.

Shen, H., Xia, X., Ouyang, Y., Jiao, X., Mutahir, S., Mandler, D., & Hao, Q. (2019). Preparation of Biomass-Based Porous Carbons with High Specific Capacitance for Applications in Supercapacitors. ChemElectroChem, 6(14), 3599–3605.

Tetra, O. N., Aziz, H., & Akmal, C. (2020). Pemanfaatan Karbon Aktif Dari Ampas Kopi Sebagai Bahan Elektroda Superkapasitor Dengan Aktivator ZnCl2. Jurnal Kimia Unand, 9(2), 9–12.

Wang, R., Li, X., Nie, Z., Jing, Q., Zhao, Y., Song, H., & Wang, H. (2022). Ag nanoparticles-decorated hierarchical porous carbon from cornstalk for high-performance supercapacitor. Journal of Energy Storage, 51.

Wu, C., Yang, S., Cai, J., Zhang, Q., Zhu, Y., & Zhang, K. (2016). Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors. ACS Applied Materials and Interfaces, 8(24), 15288–15296.

Yang, X., Wang, Q., Lai, J., Cai, Z., Lv, J., Chen, X., … Lin, G. (2020). Nitrogen-doped activated carbons via melamine-assisted NaOH/KOH/urea aqueous system for high performance supercapacitors. Materials Chemistry and Physics, 250. https://doi.org/10.1016/j.matchemphys.2020.123201

Yu, K., Zhu, H., Qi, H., & Liang, C. (2018). High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diamond and Related Materials, 88(June), 18–22.

Downloads

Published

2024-10-30

Most read articles by the same author(s)