PEMANFAATAN LIMBAH PADAT PERTANIAN DAN PERIKANAN SEBAGAI BIOSORBEN UNTUK PENYERAP BERBAGAI ZAT WARNA: SUATU TINJAUAN

Authors

  • Putri Ramadhani Andalas Unversity
  • Rahmiana Zein Andalas University
  • Zulkarnain Chaidir Andalas University
  • Zilfa Andalas University
  • Linda Hevira Mohammad Natsir University

DOI:

https://doi.org/10.31629/zarah.v7i2.1396

Keywords:

Adsorpsi, Biosorben, Limbah Pertanian, Limbah Perikanan, Low-cost

Abstract

Artikel ulasan ini memaparkan perkembangan terkini pada aplikasi metode adsorpsi dalam menghilangkan zat warna dalam air limbah. Artikel ulasan ini memberikan informasi mengenai aplikasi zat warna serta penanganan limbah dari aktivitas industri yang menggunakan zat warna dan informasi mengenai penggunaan limbah padat pertanian dan perikanan sebagai penyerap berbagai jenis zat warna. Pengolahan limbah yang mengandung zat warna melalui adsorpsi menggunakan adsorben alternatif berbiaya rendah merupakan bidang yang saat ini berkembang dan banyak diminati karena memiliki manfaat yaitu untuk pengelolaan limbah cair dan pemanfaatan limbah padat organik.

References

Aguayo-Villarreal, I. A., Ramírez-Montoya, L. A., Hernández-Montoya, V., Bonilla-Petriciolet, A., Montes-Morán, M. A., & Ramírez-López, E. M. (2013). Sorption mechanism of anionic dyes on pecan nut shells (Carya illinoinensis) using batch and continuous systems. Industrial Crops and Products, 48, 89–97. https://doi.org/10.1016/j.indcrop.2013.04.009
Alseddig, A., Eljiedi, A., & Kamari, A. (2017). Removal of Methyl Orange and Methylene Blue Dyes from Aqueous Solution Using Lala Clam ( Orbicularia orbiculata ) Shell, 40003. https://doi.org/10.1063/1.4983899
Babuponnusami, A., & Velmurugan, S. (2017). Investigation on adsorption of dye (Reactive Red 35) on Egg shell powder. International Journal of ChemTech Research, 10(1), 565–572.
Benkhaya, S., Harfi, S. El, & Harfi, A. El. (2017). Classifications , properties and applications of textile dyes : A review. Applied Journal of Environmental Engineering Science, 3(3), 311–320.
Berber-villamar, N. K., Rosa, A., Morales-barrera, L., Flores-ortiz, M., Cristiani-urbina, E., & Cha, G. M. (2018). Corncob as an effective , eco-friendly , and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions, 1–30.
Blackburn, R. S. (2004). Natural Polysaccharides and Their Interactions with Dye Molecules : Applications in Effluent Treatment †, 38(18), 4905–4909.
Bouaziz, F., Koubaa, M., Kallel, F., Chaari, F., Driss, D., Ghorbel, R. E., & Chaabouni, S. E. (2015). Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Industrial Crops and Products, 74, 903–911. https://doi.org/10.1016/j.indcrop.2015.06.007
Caroline Trevisan Weber, Gabriela Carvalho Collazzo, Marcio Antonio Mazutti, E. L. F. and G. L. D. (2014). Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds. Water Science & Technology, 70(1), 102–107. https://doi.org/10.2166/wst.2014.200
Chaidir, Z., Furqani, F., Zein, R., & Munaf, E. (2015). Utilization of Annona muricata L . seeds as potential adsorbents for the removal of rhodamine B from aqueous solution. Journal of Chemical and Pharmaceutical Research, 7(4), 879–888.
Chaidir, Z., Zein, R., Sagita, D. T., & Munaf, E. (2015). Bioremoval of methyl orange dye using durian fruit ( Durio zibethinus ) Murr seeds as biosorbent. Journal of Chemical and Pharmaceutical Research, 7(1), 589–599.
Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S., & Thomas Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination, 175(3), 305–316. https://doi.org/10.1016/j.desal.2004.10.014
Crini, G., & Badot, P. (2008). Application of chitosan , a natural aminopolysaccharide , for dye removal from aqueous solutions by adsorption processes using batch studies : A Application of chitosan , a natural aminopolysaccharide , for dye removal from aqueous solutions by adsorption. Progress in Polymer Science, 33, 399–447.
Daniel, M., Luna, G. D., Flores, E. D., Angela, D., Genuino, D., Futalan, C. M., & Wan, M. (2013). Adsorption of Eriochrome Black T ( EBT ) dye using activated carbon prepared from waste rice hulls — Optimization , isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 646–653.
Deshannavar, U. B., Murgod, A. A., Golangade, M. S., Koli, P. B., Samyak, B., & Naik, N. M. (2012). Photo-Oxidation Process – Application for Removal of Color from Textile Industry Effluent, 2(10), 75–79.
Elwakeel, K. Z., Elgarahy, A. M., & Mohammad, S. H. (2017). Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. Journal of Environmental Chemical Engineering, 5(1), 578–587. https://doi.org/10.1016/j.jece.2016.12.032
Fauzia, S., Furqani, F., Zein, R., & Munaf, E. (2015). Adsorption and reaction kinetics of tatrazine by using Annona muricata L seeds. Journal of Chemical and Pharmaceutical Research, 7(1), 573–582.
Ghanbari, F., & Moradi, M. (2014). A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Elsevier B.V. https://doi.org/10.1016/j.jece.2014.12.018
Gupta, V. K., Jain, R., Shrivastava, M., & Nayak, A. (2010). Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Tartrazine onto Waste “ Coconut Husks ” Carbon and Activated Carbon. Journal of Chemistry & Engineering Data, 55(11), 5083–5090.
Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal - A review. Journal of Environmental Management, 90(8), 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
Hassaan, M. A., & Nemr, A. El. (2017). Health and Environmental Impacts of Dyes : Mini Review Health and Environmental Impacts of Dyes : Mini Review, (November). https://doi.org/10.11648/j.ajese.20170103.11
Hu, Z., & Gao, Z. (2018). High-surface-area activated red mud for efficient removal of methylene blue from wastewater. https://doi.org/10.1177/0263617416684348
Ibrahim, S., Fatimah, I., Ang, H.-M., & Wang, S. (2010). Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Science & Technology, 62(5), 1177. https://doi.org/10.2166/wst.2010.388
Jeyajothi, K. (2014). Removal of dyes from textile wastewater using Orange peel as adsorbent. Journal of Chemical and Pharmaceutical Sciences, (4), 161–163.
Khan, T. A., Nazir, M., & Khan, E. A. (2013). Toxicological & Environmental Chemistry Adsorptive removal of rhodamine B from textile wastewater using water chestnut ( Trapa natans L .) peel : adsorption dynamics and kinetic studies. Toxicological & Environmental Chemistry, 95(6), 919–931. https://doi.org/10.1080/02772248.2013.840369
Khedr, S. A., Shouman, M. A., & Attia, A. A. (2013). Adsorption studies on the removal of cationic dye from shrimp shell using chitin. Biointerface Research in Applied Chemistry, 3(1), 507–519.
Kumar, K. V., & Porkodi, K. (2009). Equilibrium and thermodynamics of dye removal from aqueous solution by adsorption using rubber wood saw dust, 10, 295–307.
Kutlu, S., Solmaz, A., & Yonar, T. (2006). Colour and COD removal from textile effluent by coagulation and advanced oxidation processes. Coloration Technology, 102–109. https://doi.org/10.1111/j.1478-4408.2006.00016.x
Laurindo, I., Junior, C., Finger, L., Quitaiski, P. P., & Neitzke, S. M. (2018). Biosorption of 5G blue reactive dye using waste rice husk, 43, 45–58. https://doi.org/10.26850/1678-4618eqj.v43.3.p45-58
Messaoudi, E. N., Elkhomri, M., Dbik, A., Bentahar, S., Lacherai, A., & Bakiz, B. (2016). Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. Journal of Environmental Chemical Engineering, 4(4), 3848–3855.
Naghizadeh, A., & Ghafouri, M. (2017). Synthesis and performance evaluation of chitosan prepared from Persian gulf shrimp shell in removal of reactive blue 29 dye from aqueous solution (Isotherm, thermodynamic and kinetic study). Iranian Journal of Chemistry and Chemical Engineering, 36(3), 25–36.
Nethaji, S., & Sivasamy, A. (2011). Chemosphere Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon : Equilibrium and kinetic studies. Chemosphere, 82(10), 1367–1372. https://doi.org/10.1016/j.chemosphere.2010.11.080
Ouahabi, I. E., Slimani, R., Benkaddour, S., Hiyane, H., Rhallabi, N., Cagnon, B., … Lazar, S. (2018). Adsorption of textile dye from aqueous solution onto a low cost conch shells. Journal of Materials and Environme, 9(7), 1987–1998.
Priya, E. S., & Selvan, P. S. (2017). Water hyacinth ( Eichhornia crassipes ) – An efficient and economic adsorbent for textile effluent treatment – A review. Arabian Journal of Chemistry, 10, S3548–S3558. https://doi.org/10.1016/j.arabjc.2014.03.002
Ratnamala, M., Rahul, M., Sameer, S., Vaani, M., Omkar, & Devdatt, T. (2017). Column Studies for Removal of Acid Yellow Dye 17 from Synthetic Water Using Activated Saw Dust. Asian Journal of Chemistry, 29(1), 191–195.
Reddy, M. C. ., Sivaramakrishna, L., & Reddy, A. . (2012). The use of an agricultural waste material , Jujuba seeds for the removal of anionic dye ( Congo red ) from aqueous medium. Journal of Hazardous Materials, 203–204, 118–127.
Ribeiro, C., Scheufele, F. B., Espinoza-Quiñones, F. R., Módenes, A. N., da Silva, M. G. C., Vieira, M. G. A., & Borba, C. E. (2015). Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 693–701. https://doi.org/10.1016/j.colsurfa.2015.05.057
Sabur, M. A., Khan, A. A., & Safiullah, A. (2015). Treatment of Textile Wastewater by Coagulation Precipitation Method. Journal of Scientific Research, (January). https://doi.org/10.3329/jsr.v4i3.10777
Sadaf, S., & Bhatti, H. N. (2014). Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 541–553. https://doi.org/10.1016/j.jtice.2013.05.004
Shanker, M., & Chinniagounder, T. (2012). Adsorption of Reactive Dye Using Low Cost Adsorbent : Cocoa ( Theobroma Cacao ). World Journal of Applied Environmental Chemistry, 1(1), 22–29.
Sharma, S., Saxena, R., & Gaur, G. (2014). Study of Removal Techniques for Azo Dyes by Biosorption: A Review. IOSR Journal of Applied Chemistry, 7(10), 6–21. Retrieved from www.iosrjournals.org
Sivakumar, P., & Palanisamy, P. N. (2009). Packed bed column studies for the removal of Acid blue 92 and Basic red 29 using non-conventional adsorbent. Indian Journal of Chemical Technology, 16(4), 301–307.
Slokar, Y. M., & Marechal, A. M. Le. (1998). Methods of Decoloration of Textile Wastewaters, 37(4), 335–356.
Sreelatha, G., Ageetha, V., Parmar, J., & Padmaja, P. (2011). Equilibrium and Kinetic Studies on Reactive Dye Adsorption Using Palm Shell Powder (An Agrowaste) and Chitosan. Journal of Chemical Engineering, 56(1), 35–42.
Sulyman, M., Namiesnik, J., & Gierak, A. (2016). Adsorptive Removal of Aqueous Phase Crystal Violet Dye by Low-Cost Activated Carbon Obtained from Date Palm ( L .) Dead Leaflets. Engineering and Protection of Environment. https://doi.org/10.17512/ios.2016.4.14
Sulyman, M., Namiesnik, J., & Gierak, A. (2017). Low-cost Adsorbents Derived from Agricultural By-products / Wastes for Enhancing Contaminant Uptakes from Wastewater : A Review. Polish Journal of Environmental Studies, 26(2), 479–510. https://doi.org/10.15244/pjoes/66769
Sushmita, B., & Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye , tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, S1629–S1638. Retrieved from http://dx.doi.org/10.1016/j.arabjc.2013.06.005
Zein, R., Astuti, A. W., Wahyuni, D., Furqani, F., & Munaf, E. (2015). Removal of Methyl Red from Aqueous Solution by Neplhelium lappaceum. Research Journal of Pharmaceutical , Biological and Chemical Sciences, 6(3), 86–97.
Zein, R., Ramadhani, P., Aziz, & Suhaili, R. (2018). Jurnal Litbang Industri. Jurnal Litbang Industri, 8(June), 11–16. https://doi.org/10.24960/jli.v8i1.3844.23-30
Zilfa, Rahmayeni, Stiadi, Y., & Adril. (2018). Utilization of Natural Zeolite Clinoptilolite-Ca as a Support of ZnO Catalyst for Congo-red Degradation and Congo-red Waste Applications with Photolysis. Oriental Journal of Chemistry, 34(2), 887–893.

Downloads

Published

2019-11-26