PENYISIHAN LOGAM BESI DALAM SAMPEL AIR TANAH MENGGUNAKAN BIJI BUAH MATOA (POMETIA PINNATA) DENGAN METODE BIOSORBSI
DOI:
https://doi.org/10.31629/zarah.v12i1.6863Kata Kunci:
Lingkungan, air tanah, Logam Fe, Biosorpsi, Biji Matoa,Abstrak
Pertumbuhan industri telah berkontribusi pada masalah lingkungan karena menghasilkan limbah cair atau padat sebagai produk sekunder setelah pemrosesan industri salah satunya limbah logam berat yang telah menjadi ancaman bagi dunia. Logam berat dapat menyebabkan efek toksik yang lebih serius, termasuk kanker, kerusakan otak, atau kematian, dan dapat merusak lingkungan. Besi adalah varian dari logam berat padat dan beracun yang ditemukan dalam kelompok IVA, terutama berbahaya saat tertelan oleh organisme hidup, terutama spesies manusia. Zat logam ini memiliki kecenderungan untuk menumpuk di dalam ekosistem, dan penghapusannya melalui cara biologis terbukti sangat menantang. Salah satu metode yang bisa digunakan adalah biosorpsi dengan mengggunakan biji buah matoa (Pometia Pinnata) sebagai adsorben. Tujuan dari penelitian ini adalah untuk mengetahui kemampuan biji matoa (Pometia Pinnata) dalam mengurangi kandungan Logam besi didalam sampel. Metode biosorpsi yang digunakan didalam penelitian ini secara batch. Hasil yang diperoleh adalah tidak terlihat pengaruh yang signifikan perubahan warna pada air tanah sebelum dan dikontakkan dengan biosorben dari biji matoa. Pada penentuan pHpzc yaitu pada pH 4 dengan waktu kontak optimum 60 menit dan dosis sampel 0,1 g serta kecepatan pengadukan 200 rpm Dimana kecepatan pengadukan sangat mempengaruhi kemampuan daya serap adsorben dengan kapasitas adsorpsi 0,341 mg/L. Biji buah matoa memiliki kemampuan dalam mengurangi kandungan logam berat Fe didalam air tanah.
Referensi
Alabi, Olushola, Alade Abass Olanrewaju, and Tinuade Jolaade Afolabi. 2020. “Process Optimization of Adsorption of Cr(VI) on Adsorbent Prepared from Bauhinia Rufescens Pod by Box-Behnken Design.†Separation Science and Technology (Philadelphia) 55(1): 47–60. https://doi.org/10.1080/01496395.2019.1577436.
Ali Redha, Ali. 2020. “Removal of Heavy Metals from Aqueous Media by Biosorption.†Arab Journal of Basic and Applied Sciences 27(1): 183–93. https://doi.org/10.1080/25765299.2020.1756177.
Ameen, Mahy M. et al. 2021. “Factors Affecting Efficiency of Biosorption of Fe (Iii) and Zn (Ii) by Ulva Lactuca and Corallina Officinalis and Their Activated Carbons.†Water (Switzerland) 13(23).
Bahaa, Shaymaa, Israa Abdulwahab Al-Baldawi, Safaa Rasheed Yaseen, and Siti Rozaimah Sheikh Abdullah. 2019. “Biosorption of Heavy Metals from Synthetic Wastewater by Using Macro Algae Collected from Iraqi Marshlands.†Journal of Ecological Engineering 20(11): 18–22.
El-Defrawy, M. M., I. M.M. Kenawy, E. G. Zaki, and Rania M. Eltabey. 2019. “Adsorption of the Anionic Dye (Diamond Fast Brown Ke) from Textile Wastewater onto Chitosan/Montmorillonite Nanocomposites.†Egyptian Journal of Chemistry 62(12): 2183–93.
Fauzia, Syiffa et al. 2019. “Adsorption of Cr(VI) in Aqueous Solution Using Sago Bark (Metroxylon Sagu) as a New Potential Biosorbent.†Desalination and Water Treatment 147: 191–202.
Gök, Cem, Sule Aytas, and Hasan Sezer. 2017. “Modeling Uranium Biosorption by Cystoseira Sp. and Application Studies.†Separation Science and Technology (Philadelphia) 52(5): 792–803. http://dx.doi.org/10.1080/01496395.2016.1267212.
Hevira, Linda et al. 2020. “Biosorption of Indigo Carmine from Aqueous Solution by Terminalia Catappa Shell.†Journal of Environmental Chemical Engineering 8(5): 104290. https://doi.org/10.1016/j.jece.2020.104290.
Isik, Birol, Volkan Ugraskan, and Ozlem Cankurtaran. 2022. “Effective Biosorption of Methylene Blue Dye from Aqueous Solution Using Wild Macrofungus (Lactarius Piperatus).†Separation Science and Technology (Philadelphia) 57(6): 854–71. https://doi.org/10.1080/01496395.2021.1956540.
Kriswandana, Ferry. 2020. “Journal of Global Pharma Technology The Effectiveness of Reduction of Weight Metal Contents of Pb , and Hg in Water Electro-Coagulation Methodfile:///E:/4. Mey/5. Kantor/4. Tugas Tambahan Dosen/P Win/9.Pdf.†Journal of Global Pharma Technology 12(09): 306–13. http://www.jgpt.co.in/index.php/jgpt/article/download/3776/2900.
Kustomo, Kustomo, Naila Lajja Zulfa Faza, and Andreas Haarstrick. 2022. “Adsorption of Cd (II) into Activated Charcoal from Matoa Fruit Peel.†Walisongo Journal of Chemistry 5(1): 83–93.
Morosanu, Irina et al. 2017. “Biosorption of Lead Ions from Aqueous Effluents by Rapeseed Biomass.†New Biotechnology 39: 110–24. http://dx.doi.org/10.1016/j.nbt.2016.08.002.
Nadeem, Raziya, Qaisar Manzoor, Munawar Iqbal, and Jan Nisar. 2016. “Biosorption of Pb(II) onto Immobilized and Native Mangifera Indica Waste Biomass.†Journal of Industrial and Engineering Chemistry 35: 185–94. http://dx.doi.org/10.1016/j.jiec.2015.12.030.
Podder, M. S., and C. B. Majumder. 2017. 3 Sustainable Water Resources Management Simultaneous Biosorption and Bioaccumulation: A Novel Technique for the Efficient Removal of Arsenic. Springer International Publishing.
Putra, Adewirli et al. 2022. “Preparation, Characterization, and Adsorption Performance of Activated Rice Straw as a Bioadsorbent for Cr(VI) Removal from Aqueous Solution Using a Batch Method.†Desalination and Water Treatment 264(32): 121–32.
Ren, Guangming et al. 2015. “Characteristics of Bacillus Sp. PZ-1 and Its Biosorption to Pb(II).†Ecotoxicology and Environmental Safety 117: 141–48. http://dx.doi.org/10.1016/j.ecoenv.2015.03.033.
Sahmoune, Mohamed Nasser. 2018. “Performance of Streptomyces Rimosus Biomass in Biosorption of Heavy Metals from Aqueous Solutions.†Microchemical Journal 141(2017): 87–95. https://doi.org/10.1016/j.microc.2018.05.009.
Sibi, G. 2016. “Biosorption of Chromium from Electroplating and Galvanizing Industrial Effluents under Extreme Conditions Using Chlorella Vulgaris.†Green Energy and Environment 1(2): 172–77. http://dx.doi.org/10.1016/j.gee.2016.08.002.
Sihotang, Yosua Maranatha et al. 2017. “Science & Technology Indonesia against Paracetamol-Induced Liver Disease in Rats.†2: 92–95.
Wang, Guiyin et al. 2018. “Removal of Pb(II) from Aqueous Solutions by Phytolacca Americana L. Biomass as a Low Cost Biosorbent.†Arabian Journal of Chemistry 11(1): 99–110. http://dx.doi.org/10.1016/j.arabjc.2015.06.011.
Wu, Yunhai et al. 2016. “Functionalized Agricultural Biomass as a Low-Cost Adsorbent: Utilization of Rice Straw Incorporated with Amine Groups for the Adsorption of Cr(VI) and Ni(II) from Single and Binary Systems.†Biochemical Engineering Journal 105: 27–35. http://dx.doi.org/10.1016/j.bej.2015.08.017.
Zein, Rahmiana et al. 2023. “Banana Stem (Musa Balbisiana Colla) as Potential Biosorbent to Remove Methylene Blue Dye in Wastewater: Isotherm, Kinetic, Thermodynamic Studies and Its Application.†Applied Environmental Research 45(3).
Zein, Rahmiana, Zebbil Billian Tomi, Syiffa Fauzia, and Zilfa Zilfa. 2020. “Modification of Rice Husk Silica with Bovine Serum Albumin (BSA) for Improvement in Adsorption of Metanil Yellow Dye.†Journal of the Iranian Chemical Society 17(10): 2599–2612. https://doi.org/10.1007/s13738-020-01955-6.
Zulfahmi et al. 2023. “Molecular Identification of Mother Trees of Four Matoa Cultivars (Pometia Pinnata Forst & Forst) from Pekanbaru City, Indonesia Using RAPD Markers.†Biodiversitas 24(3): 1524–29.
##submission.downloads##
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Zarah
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.