TINJAUAN BIOFABRIKASI NANOPARTIKEL PERAK DAN EMAS DENGAN MENGGUNAKAN EKTRAK TANAMAN
DOI:
https://doi.org/10.31629/zarah.v9i1.2799Kata Kunci:
AgNPs, AuNPs, biosintesis, ekstrak tanamanAbstrak
Material nano diperolah dari material sintesis biologis melalui teknik berbasis green chemistry yang ramah lingkungan. Ulasan ini difokuskan pada sintesis nanopartikel logam perak dan emas pada tanaman dan karaterisasinya. Ekstrak tumbuhan yang dilakukan secara eksperimental memberikan karakterisasi yang bervariasi. Strategi ini memainkan peranan penting dalam variasi strategi bentuk, ukuran, dan morfologi dari nanopartikel logam, yang mengarah pada perbedaan aktivitas aplikasi dari nnopartikel logam tersebut. Tulisan ini terutama merangkum berbagai metode sintesis nanopartikel emas dan perak dan karakterisai dalam berbagai bagian tanaman dan juga mendokumentasikan informasi rinci tentang strategi yang terlibat dalam penggunaan ekstrak tanaman sebagai reduktor dalam sintesis nanopartikel logam dengan berbagai aplikasi.
Referensi
Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., 2016. REVIEW A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications : A green expertise. J. Adv. Res. 7, 17–28. https://doi.org/10.1016/j.jare.2015.02.007
Aisida, S.O., Ugwu, K., Nwanya, A.C., Bashir, A.K.H., Uba Nwankwo, N., Ahmed, I., Ezema, F.I., 2020. Biosynthesis of silver oxide nanoparticles using leave extract of Telfairia Occidentalis and its antibacterial activity. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.03.005
Ali, E.M., Abdallah, B.M., 2020. Effective inhibition of candidiasis using an eco-friendly leaf extract of calotropis-gigantean-mediated silver nanoparticles. Nanomaterials 10, 1–16. https://doi.org/10.3390/nano10030422
Balasubramanian, S., Kala, S.M.J., Pushparaj, T.L., 2020. Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J. Drug Deliv. Sci. Technol. 57, 101620. https://doi.org/10.1016/j.jddst.2020.101620
Barabadi, H., Ovais, M., Shinwari, Z.K., 2017. Green Chemistry Letters and Reviews Anti-cancer green bionanomaterials : present status and future prospects 8253. https://doi.org/10.1080/17518253.2017.1385856
Barani, H., Montazer, M., Toliyat, T., Samadi, N., 2010. Synthesis of Ag-liposome nano composites. J. Liposome Res. 20, 323–329. https://doi.org/10.3109/08982100903544177
Boomi, P., Poorani, G.P., Selvam, S., Palanisamy, S., Jegatheeswaran, S., Anand, K., Balakumar, C., Premkumar, K., Prabu, H.G., 2020. Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Appl. Organomet. Chem. 34, 1–13. https://doi.org/10.1002/aoc.5574
Cyril, N., George, J.B., Joseph, L., Raghavamenon, A.C., Sylas, V.P., 2019. Assessment of antioxidant, antibacterial and anti-proliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicol. Res. (Camb). 8, 297–308. https://doi.org/10.1039/C8TX00323H
Dang, H., Fawcett, D., Eddy, G., Poinern, J., Eddy, G., Poinern, J., 2019. Green synthesis of gold nanoparticles from waste macadamia nut shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis 7, 1171–1177.
Devi, G.K., Suruthi, P., Veerakumar, R., Vinoth, S., Subbaiya, R., Chozhavendhan, S., 2019. A Review on Metallic Gold and Silver Nanoparticles. Res. J. Pharm. Technol. 12, 935. https://doi.org/10.5958/0974-360x.2019.00158.6
Dhayalan, M., Denison, M.I.J., Ayyar, M., Gandhi, N.N., Krishnan, K., Abdulhadi, B., 2018. Biogenic synthesis, characterization of gold and silver nanoparticles from Coleus forskohlii and their clinical importance. J. Photochem. Photobiol. B Biol. 183, 251–257. https://doi.org/10.1016/j.jphotobiol.2018.04.042
Doan, V.D., Thieu, A.T., Nguyen, T.D., Nguyen, V.C., Cao, X.T., Nguyen, T.L.H., Le, V.T., 2020. Biosynthesis of Gold Nanoparticles Using Litsea cubeba Fruit Extract for Catalytic Reduction of 4-Nitrophenol. J. Nanomater. 2020. https://doi.org/10.1155/2020/4548790
Dutta, T., Ghosh, N.N., Das, M., Adhikary, R., Mandal, V., Chattopadhyay, A.P., 2020. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. J. Environ. Chem. Eng. 8, 104019. https://doi.org/10.1016/j.jece.2020.104019
Fatima, R., Priya, M., Indurthi, L., Radhakrishnan, V., Sudhakaran, R., 2020. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb. Pathog. 138, 103780. https://doi.org/10.1016/j.micpath.2019.103780
Fatimah, I., Aftrid, Z.H.V.I., 2019. Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus Tricolor L.) leaf extract. Green Chem. Lett. Rev. 12, 25–30. https://doi.org/10.1080/17518253.2019.1569729
Filip, G.A., Moldovan, B., Baldea, I., Olteanu, D., Suharoschi, R., Decea, N., Cismaru, C.M., Gal, E., Cenariu, M., Clichici, S., David, L., 2019. UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J. Photochem. Photobiol. B Biol. 191, 26–37. https://doi.org/10.1016/j.jphotobiol.2018.12.006
Francis, S., Joseph, S., Koshy, E.P., Mathew, B., 2017. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. 24, 17347–17357. https://doi.org/10.1007/s11356-017-9329-2
Francis, S., Koshy, E.P., Mathew, B., 2018. Green synthesis of Stereospermum suaveolens capped silver and gold nanoparticles and assessment of their innate antioxidant, antimicrobial and antiproliferative activities. Bioprocess Biosyst. Eng. 41, 939–951. https://doi.org/10.1007/s00449-018-1925-0
Ghoreishi, S.M., Behpour, M., Khayatkashani, M., 2011. Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Phys. E Low-dimensional Syst. Nanostructures 44, 97–104. https://doi.org/10.1016/j.physe.2011.07.008
Girón-Vázquez, N.G., Gómez-Gutiérrez, C.M., Soto-Robles, C.A., Nava, O., Lugo-Medina, E., Castrejón-Sánchez, V.H., Vilchis-Nestor, A.R., Luque, P.A., 2019a. Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results Phys. 13. https://doi.org/10.1016/j.rinp.2019.02.078
Girón-Vázquez, N.G., Gómez-Gutiérrez, C.M., Soto-Robles, C.A., Nava, O., Lugo-Medina, E., Castrejón-Sánchez, V.H., Vilchis-Nestor, A.R., Luque, P.A., 2019b. Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results Phys. 13, 102142. https://doi.org/10.1016/j.rinp.2019.02.078
Hamelian, M., Hemmati, S., Varmira, K., Veisi, H., 2018a. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. J. Taiwan Inst. Chem. Eng. 93, 21–30. https://doi.org/10.1016/j.jtice.2018.07.018
Hamelian, M., Varmira, K., Veisi, H., 2018b. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. J. Photochem. Photobiol. B Biol. 184, 71–79. https://doi.org/10.1016/j.jphotobiol.2018.05.016
Ismail, M., Gul, S., Khan, M.A., Khan, M.I., 2016.  A Review on Recent TrendsPlant Mediated Green Synthesis of Anti-Microbial Silver Nanoparticles. https://doi.org/10.1166/rnn.2016.1073
Johnson, P., Krishnan, V., Loganathan, C., Govindhan, K., Raji, V., Sakayanathan, P., Vijayan, S., Sathishkumar, P., Palvannan, T., 2018. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. Artif. Cells, Nanomedicine Biotechnol. 46, 1488–1494. https://doi.org/10.1080/21691401.2017.1374283
Keshari, A.K., Srivastava, R., Singh, P., Yadav, V.B., Nath, G., 2020. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 11, 37–44. https://doi.org/10.1016/j.jaim.2017.11.003
Khan, S., Singh, S., Gaikwad, S., Nawani, N., Junnarkar, M., Pawar, S.V., 2019. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-019-05239-2
Kumar R, Ghoshal G*, J.A. and G.M., 2017. Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. J. Nanomed. Nanotechnol. 08. https://doi.org/10.4172/2157-7439.1000452
Kumaran, S., Santhiyaa, R.V., Prakaesh, U., Sivasankari, B., Kokila, D., 2019. Biosynthesis of silver nanoparticles using aqueous flower extracts of Polianthes tuberosa and their antibacterial and cytotoxicity activity .
Labanni, A., Zulhadjri, Z., Handayani, D., Ohya, Y., Arief, S., 2019. The effect of monoethanolamine as stabilizing agent in Uncaria gambir Roxb. mediated synthesis of silver nanoparticles and its antibacterial activity. J. Dispers. Sci. Technol. 0, 1–8. https://doi.org/10.1080/01932691.2019.1626249
Lakhan, M.N., Chen, R., Shar, A.H., Chand, K., Shah, A.H., Ahmed, M., Ali, I., Ahmed, R., Liu, J., Takahashi, K., Wang, J., 2020. Eco-friendly green synthesis of clove buds extract functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. J. Microbiol. Methods 173, 105934. https://doi.org/10.1016/j.mimet.2020.105934
Le Ouay, B., Stellacci, F., 2015. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 10, 339–354. https://doi.org/10.1016/j.nantod.2015.04.002
Maheshwaran, G., Nivedhitha Bharathi, A., Malai Selvi, M., Krishna Kumar, M., Mohan Kumar, R., Sudhahar, S., 2020. Green synthesis of Silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. J. Environ. Chem. Eng. 8, 104137. https://doi.org/10.1016/j.jece.2020.104137
Manosalva, N., Tortella, G., Cristina Diez, M., Schalchli, H., Seabra, A.B., Durán, N., Rubilar, O., 2019. Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. 35, 1–9. https://doi.org/10.1007/s11274-019-2664-3
N.H. Abdurahman; 1 J.Nitthiya; 2 Manal, S.O., 2016. The Potential of Rhizophoramucronata in Extracting the Chemical Composition and Biological Activities as Mangrove Plants: A Review. Aust. J. Basic Appl. Sci. 10, 114–139.
Nagababu, P., Rao, V.U., 2017. Pharmacological Assessment , Green synthesis and Characterization of Silver Nanoparticles of Sonneratia apetala Buch . -Ham . Leaves. J. Appl. Pharm. Sci. 7, 175–182. https://doi.org/10.7324/JAPS.2017.70824
Naimi-Shamel, N., Pourali, P., Dolatabadi, S., 2019. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med. 1–7. https://doi.org/10.1016/j.mycmed.2019.01.005
Nathakumar, R., Krishnan, Chitra, rose chelan, sankar seethalakshmi and kurian grace selina, 2019. Extracellular Biofabrication of Silver and Gold Nanoparticles: Treasures From the Abyssal Zone. Asian J. Pharm. Clin. Res. 44–54. https://doi.org/10.22159/ajpcr.2019.v12i2.29781
Oueslati, M.H., Tahar, L. Ben, Harrath, A.H., 2018. Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. Arab. J. Chem. 13, 3112–3122. https://doi.org/10.1016/j.arabjc.2018.09.003
Qiao, J., Qi, L., 2021. Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 223. https://doi.org/10.1016/j.talanta.2020.121396
Rafique, M., Sadaf, I., Rafique, M.S., Tahir, M.B., 2017. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells, Nanomedicine, Biotechnol. 0, 1272–1291. https://doi.org/10.1080/21691401.2016.1241792
Rajeshkumar, S., 2016. Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resour. Technol. 2, 30–35. https://doi.org/10.1016/j.reffit.2016.06.003
Rauwel, P., Küünal, S., Ferdov, S., Rauwel, E., 2015. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM 2015.
Renuka, R., Devi, K.R., Sivakami, M., Thilagavathi, T., Uthrakumar, R., Kaviyarasu, K., 2020. Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application. Biocatal. Agric. Biotechnol. 24, 101567. https://doi.org/10.1016/j.bcab.2020.101567
Sahayaraj, K., Balasubramanyam, G., Chavali, M., 2020. Green synthesis of silver nanoparticles using dry leaf aqueous extract of Pongamia glabra Vent (Fab.), Characterization and phytofungicidal activity. Environ. Nanotechnology, Monit. Manag. 14, 100349. https://doi.org/10.1016/j.enmm.2020.100349
Sanyasi, S., Majhi, R.K., Kumar, S., Mishra, M., Ghosh, A., Suar, M., Satyam, P.V., Mohapatra, H., Goswami, C., Goswami, L., 2016. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep. 6, 1–16. https://doi.org/10.1038/srep24929
Siegel, J., Staszek, M., PolÃÂÂvková, M., Ã…ËœeznÃÂÂÄÂÂková, A., 2016. Green synthesized noble metals for biological applications. Mater. Today Proc. 3, 608–616. https://doi.org/10.1016/j.matpr.2016.01.098
Singh, A.K., Tiwari, R., Singh, V.K., Singh, P., Khadim, S.R., Singh, U., Laxmi, Srivastava, V., Hasan, S.H., Asthana, R.K., 2019. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J. Drug Deliv. Sci. Technol. 51, 164–176. https://doi.org/10.1016/j.jddst.2019.02.023
Singh, H., Du, J., Singh, P., Yi, T.H., 2018. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells, Nanomedicine Biotechnol. 46, 1163–1170. https://doi.org/10.1080/21691401.2017.1362417
Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., Upadhyay, S.N., 2016. Green Synthesis of Silver Nanoparticles : A Review 34–56.
Syukri, A., Fri Wardana, N., Zulhadjri, Z., Arniati, L., 2020. High antibacterial properties of green synthesized gold nanoparticles using Uncaria gambir Roxb. leaf extract and triethanolamine. J. Appl. Pharm. Sci. 10, 124–130. https://doi.org/10.7324/japs.2020.10814
Tahir, K., Nazir, S., Li, B., Ullah, A., Ul, Z., Khan, H., Gong, P.Y., Khan, U., Ahmad, A., 2015. Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater. Lett. https://doi.org/10.1016/j.matlet.2015.05.062
Unal, I.S., Demirbas, A., Onal, I., Ildiz, N., Ocsoy, I., 2020. One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. J. Photochem. Photobiol. B Biol. 204, 111800. https://doi.org/10.1016/j.jphotobiol.2020.111800
Usman, A.I., Aziz, A.A., Noqta, O.A., 2019. Application of green synthesis of gold nanoparticles: A review. J. Teknol. 81, 171–182. https://doi.org/10.11113/jt.v81.11409
Vergara-castañeda, H., Granados-segura, L.O., Luna-bárcenas, G., Mcclements, D.J., 2019. Gold nanoparticles bioreduced by natural extracts of arantho ( Kalanchoe daigremontiana ) for biological purposes : physicochemical , antioxidant and antiproliferative evaluations Gold nanoparticles bioreduced by natural extracts of arantho ( Kalanchoe da.
Vijayan, R., Joseph, S., Mathew, B., 2018. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cells, Nanomedicine Biotechnol. 46, 861–871. https://doi.org/10.1080/21691401.2017.1345930
Vijayaraghavan, K., Nalini, S.P.K., Prakash, N.U., Madhankumar, D., 2012. One step green synthesis of silver nano / microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surfaces B Biointerfaces 94, 114–117. https://doi.org/10.1016/j.colsurfb.2012.01.026
Vimalraj, S., Ashokkumar, T., Saravanan, S., 2018. Biomedicine & Pharmacotherapy Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial , anticancer and anti-angiogenic properties. Biomed. Pharmacother. 105, 440–448. https://doi.org/10.1016/j.biopha.2018.05.151
Vo, T.T., Dang, C.H., Doan, V.D., Dang, V.S., Nguyen, T.D., 2020. Biogenic Synthesis of Silver and Gold Nanoparticles from Lactuca indica Leaf Extract and Their Application in Catalytic Degradation of Toxic Compounds. J. Inorg. Organomet. Polym. Mater. 30, 388–399. https://doi.org/10.1007/s10904-019-01197-x
Willian, N., 2018. Marine Bio-Nanoteknologi Perak (AgNPs) menggunakan Ekstrak Tanaman Mengrove dan Aplikasinya. J. Zarah 6, 13–20.
Willian, N., Syukri, Zulhadjri, Labanni, A., Arief, S., 2020. Bio-friendly synthesis of silver nanoparticles using mangrove rhizophora stylosa leaf aqueous extract and its antibacterial and antioxidant activity. Rasayan J. Chem. 13, 1478–1485. https://doi.org/10.31788/RJC.2020.1335760
Zayed, M.F., Mahfoze, R.A., El-kousy, S.M., Al-Ashkar, E.A., 2019. In-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids Surfaces A Physicochem. Eng. Asp. 124167. https://doi.org/10.1016/j.colsurfa.2019.124167
Zhang, T., Dang, M., Zhang, W., Lin, X., 2019. Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. J. Photochem. Photobiol. B Biol. 111705. https://doi.org/10.1016/j.jphotobiol.2019.111705