PENDEKATAN GREEN SYNTHESIS ZnAl2O4 MENGGUNAKAN EKSTRAK DAUN KUMIS KUCING (Orthosiphon aristatus)
DOI:
https://doi.org/10.31629/zarah.v10i1.4405Keywords:
Ekstrak daun, Green synthesis, Orthosiphon aristatus, Variasi berat, ZnAl2O4Abstract
Telah dilakukan pendekatan green synthesis ZnAl2O4 menggunakan ekstrak daun kumis kucing (Orthosiphon aristatus). Penelitian ini bertujuan untuk mengetahui efek ekstrak daun kumis kucing terhadap kristalinitas, ukuran, dan morfologi ZnAl2O4 yang diperoleh.. Green synthesis ZnAl2O4 dilakukan dengan menggunakan variasi massa ekstrak, yaitu 8, 12, dan 20 g. Hasil penelitian menunjukkan bahwa ekstrak daun kumis kucing berpengaruh kuat terhadap kristalinitas, bentuk, dan ukuran ZnAl2O4 yang diperoleh. Berdasarkan hasil analisis XRD, kristalinitas ZnAl2O4 yang disintesis menggunakan ekstrak kumis kucing menunjukkan kristalinitas yang lebih baik dibandingkan tanpa ekstrak. Penggunaan ekstrak 12 gram menghasilkan ZnAl2O4 dengan kristalinitas paling baik. Hasil analisis SEM menunjukkan bentuk partikel yang dihasilkan tidak seragam dengan ukuran yang bervariasi. Hasil penelitian ini menegaskan bahwa ekstrak berperan kunci dalam pembentukan ZnAl2O4.
References
Angasa, E., Putri, Y. E., Zulhadjri, Jamarun, N., & Arief, S. (2020). Improving the morphological, optical, and photocatalytic properties of octahedral Zn2SnO4 using Garcinia mangostana fruit peel extract. Vacuum, 182(109719). https://doi.org/10.1016/j.vacuum.2020.109719
Angasa, E., Sari, I. N., Wardani, P. K., Yudha, S. P., & Gustian, I. (2015). Synthesis of zinc aluminate (ZnAl2O4) by using water extract of Impatiens balsamina L. Journal of Chemical and Pharmaceutical Research, 7(10), 518–521.
Azar, B. E., Ramazani, A., Fardood, S. T., & Morsali, A. (2020). Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik, 208. https://doi.org/10.1016/j.ijleo.2019.164129
Ballarini, A. D., Bocanegra, S. A., Castro, A. A., De Miguel, S. R., & Scelza, O. A. (2009). Characterization of ZnAl2O4 obtained by different methods and used as catalytic support of Pt. Catalysis Letters, 129, 293–302. https://doi.org/10.1007/s10562-008-9833-6
Battiston, S., Rigo, C., Severo, E. da C., Mazuttia, M. A., Kuhn, R. C., Gündel, A., & Foletto, E. L. (2014). Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Materials Research, 17(3), 734–738. https://doi.org/httpI://dx.doi.org/10.1590/S1516-14392014005000073
Belyaev, A. V., Lelet, M. I., Kirillova, N. I., Khamaletdinova, N. M., Boldin, M. S., Murashov, A. A., & Balabanov, S. S. (2019). Sol-gel synthesis and characterization of ZnAl2O4 powders for transparent ceramics. Ceramics International, 45(4), 4835–4839. https://doi.org/10.1016/j.ceramint.2018.11.179
Bobade, D. S., & Undre, P. B. (2020). Green synthesis of Ce+3 doped ZnAl2O4 phosphor using aloe - vera extract and its characterization. Journal of Physics: Conference Series, 1644(012032). https://doi.org/10.1088/1742-6596/1644/1/012032
Chen, X. Y., Ma, C., Zhang, Z. J., & Wang, B. N. (2008). Ultrafine gahnite (ZnAl2O4) nanocrystals: Hydrothermal synthesis and photoluminescent properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 151, 224–230. https://doi.org/10.1016/j.mseb.2008.09.023
Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. In Educational Research (Vol. 4). Pearson. https://doi.org/10.1017/CBO9781107415324.004
Dauthal, P., & Mukhopadhyay, M. (2016). Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Industrial and Engineering Chemistry Research, 55(36), 9557–9577. https://doi.org/10.1021/acs.iecr.6b00861
Gholami, T., Salavati-Niasari, M., & Sabet, M. (2018). Novel green synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposite and comparison of electrochemical hydrogen storage and Coulombic efficiency. Journal of Cleaner Production, 178, 14–21. https://doi.org/10.1016/j.jclepro.2018.01.012
Grooms, J., Enderle, P., & Sampson, V. (2015). Coordinating Scientific Argumentation and the Next Generation Science Standards through Argument Driven Inquiry. Science Educator, 24(1), 45–50.
Hsu, C. L., Hong, B. H., Yu, Y. S., & Yen, G. C. (2010). Antioxidant and anti-inflammatory effects of orthosiphon aristatus and its bioactive compounds. Journal of Agricultural and Food Chemistry, 58, 2150–2156. https://doi.org/10.1021/jf903557c
HuÃÂzar-Padilla, E., Guillén-Bonilla, H., Guillén-Bonilla, A., RodrÃÂguez-Betancourtt, V. M., Sánchez-MartÃÂnez, A., Guillen-Bonilla, J. T., Gildo-Ortiz, L., & Reyes-Gómez, J. (2021). Synthesis of ZnAl2O4 and evaluation of the response in propane atmospheres of pellets and thick films manufactured with powders of the oxide. Sensors, 21, 1–16. https://doi.org/10.3390/s21072362
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638. https://doi.org/10.1039/c1gc15386b
Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2016). Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Reviews, 3(2), 55–67. https://doi.org/10.1002/cben.201500018
Kharissova, O. V., Dias, H. V. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240–248. https://doi.org/10.1016/j.tibtech.2013.01.003
Kumar, K., Ramamoorthy, K., Koinkar, P. M., Chandramohan, R., & Sankaranarayanan, K. (2007). A novel way of modifying nano grain size by solution concentration in the growth of ZnAl2O4 thin films. Journal of Nanoparticle Research, 9, 331–335. https://doi.org/10.1007/s11051-006-9108-3
Md Ishak, N. A. I., Kamarudin, S. K., & Timmiati, S. N. (2019). Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Materials Research Express, 6(112004). https://doi.org/10.1088/2053-1591/ab4458
Menon, S. G., Choudhari, K. S., Shivashankar, S. A., Chidangil, S., & Kulkarni, S. D. (2017). Microwave solution route to ceramic ZnAl2O4 nanoparticles in 10 minutes: Inversion and photophysical changes with thermal history. New Journal of Chemistry, 41, 5420–5428. https://doi.org/10.1039/c7nj01006k
Phani, A. R., Passacantando, M., & Santucci, S. (2001). Synthesis and characterization of zinc aluminum oxide thin films by sol-gel technique. Materials Chemistry and Physics, 68, 66–71. https://doi.org/https://doi.org/10.1016/S0254-0584(00)00270-4
Ragupathi, C., Vijaya, J. J., Manikandan, A., & Kennedy, L. J. (2013). Phytosynthesis of Nano ZnAl2O4 by Using Sesamum (Sesamum indicum L.) Optical and Catalytic Properties. Journal of Nanoscience and Nanotechnology, 13, 1–9. https://doi.org/10.1166/jnn.2013.7922
Ragupathi, C., Vijaya, J. J., Narayanan, S., Kennedy, L. J., & Ramakrishna, S. (2013). Catalytic properties of nanosized zinc aluminates prepared by green process using Opuntia dilenii haw plant extract. Chinese Journal of Catalysis, 34(10), 1951–1958. https://doi.org/10.1016/S1872-2067(12)60682-2
Rambey, R., Susilowati, A., Rangkuti, A. B., Onrizal, O., Desrita, Ardi, R., & Hartanto, A. (2021). Plant diversity, structure and composition of vegetation around barumun watershed, north sumatra, indonesia. Biodiversitas, 22(8), 3250–3256. https://doi.org/10.13057/biodiv/d220819
Sampson, V., & Grooms, J. (2007). Promoting and supporting scientific argumentation in the classroom: The evaluate-alternatives instructional model. Science Scope, 33(1), 66–74.
Vijayan, R., Joseph, S., & Mathew, B. (2018). Augmented antimicrobial, antioxidant and catalytic activities of green synthesised silver nanoparticles. Materials Research Express, 5(8). https://doi.org/https://doi.org/10.1088/2053-1591/aaaf33
Zhao, H., Dong, Y., Jiang, P., Wang, G., Zhang, J., & Zhang, C. (2015). ZnAl2O4 as a novel high-surface-area ozonation catalyst: One-step green synthesis, catalytic performance and mechanism. Chemical Engineering Journal, 260, 623–630. https://doi.org/10.1016/j.cej.2014.09.034