KOAGULASI RAMAH LINGKUNGAN DENGAN KAPUR SIRIH (Ca(OH)₂) UNTUK PENGHILANGAN MIKROPLASTIK PADA IKAN BILIH (Mystacoleucus padangensis) DARI DANAU SINGKARAK, WILAYAH TANAH DATAR, SUMATERA BARAT, INDONESIA
Keywords:
Danau Singkarak, ikan bilih, kapur sirih, koagulan, mikroplastikAbstract
Kapur sirih (Ca(OH)₂) diteliti sebagai koagulan anorganik yang tersedia secara lokal dan ramah lingkungan untuk mengurangi kontaminasi mikroplastik pada ikan bilih (Mystacoleucus padangensis) dari Danau Singkarak, Tanah Datar, Sumatera Barat, Indonesia. Studi ini mengevaluasi efisiensi koagulasi, kondisi operasi optimal, dan mekanisme yang mendasari. Penghilangan optimal dicapai pada konsentrasi koagulan 5%, waktu kontak 60 menit, dan kecepatan pengadukan 300 rpm. Penambahan 5% NaCl secara signifikan meningkatkan kemampuan pengurangan mikroplastik, mencapai efisiensi hingga 70,73%. Analisis morfologis dengan Scanning Electron Microscopy (SEM) menunjukkan pembentukan gumpalan besar, mengindikasikan interaksi fisik antara mikroplastik dan endapan kalsium hidroksida. Penurunan nilai zeta potensial setelah koagulasi menunjukkan netralisasi muatan yang efektif dan destabilisasi koloid. Hasil ini menyoroti kapur sirih sebagai koagulan yang menjanjikan, berbiaya rendah, dan berkelanjutan untuk mengurangi polusi mikroplastik di lingkungan air tawar, terutama di daerah danau.
References
Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082
Application of plant-based natural coagulants in water treatmentPatchaiyappan, A., & Devipriya, S. P. (2021). Application of plant-based natural coagulants in water treatment. Cost Effective Technologies for Solid Waste and Wastewater Treatment, 51–58. https://doi.org/10.1016/B978-0-12-822933-0.00012-7
Azizi, N., Pirsaheb, M., Jaafarzadeh, N., & Nabizadeh Nodehi, R. (2023). Microplastics removal from aquatic environment by coagulation: Selecting the best coagulant based on variables determined from a systematic review. Heliyon, 9(5), e15664. https://doi.org/10.1016/j.heliyon.2023.e15664
Badawi, A. K. (2025). RSC Advances Sustainable coagulative removal of microplastic from aquatic systems : recent progress and outlook. RSC Advances, 15, 25256–25273. https://doi.org/10.1039/D5RA04074D
Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J., & Thompson, R. C. (2013). Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology, 23(23), 2388–2392. https://doi.org/10.1016/j.cub.2013.10.012
Cai, Q., Li, X., Ding, X., Wang, H., & Hu, X. (2023). Effects of quercetin and Ca(OH)2 addition on gelatinization and retrogradation properties of Tartary buckwheat starch. Lwt, 178(October 2022), 114488. https://doi.org/10.1016/j.lwt.2023.114488
Cao, N. D. T., Vo, D. H. T., Pham, M. D. T., Nguyen, V. T., Nguyen, T. B., Le, L. T., Mukhtar, H., Nguyen, H. V., Visvanathan, C., & Bui, X. T. (2024). Microplastics contamination in water supply system and treatment processes. Science of the Total Environment, 926(December 2023), 171793. https://doi.org/10.1016/j.scitotenv.2024.171793
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
Daniel, D. B., Ashraf, P. M., & Thomas, S. N. (2020). Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India. Environmental Pollution, 266, 115365. https://doi.org/10.1016/j.envpol.2020.115365
Dayarathne, H. N. P., Angove, M. J., Aryal, R., Abuel-Naga, H., & Mainali, B. (2021). Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. Journal of Water Process Engineering, 40(December 2020), 101820. https://doi.org/10.1016/j.jwpe.2020.101820
Deswati, D., Kurnia Hamzani, B., Yusuf, Y., Elsa Fitri, W., & Putra, A. (2023). Detection of microplastic contamination in table salts in Padang City, Indonesia, and control strategies for choosing healthy salt. International Journal of Environmental Analytical Chemistry, 00(00), 1–16. https://doi.org/10.1080/03067319.2023.2268523
Deswati, D., Yusuf, Y., Putra, Z. A., & Putra, A. (2025). Abundance and Characteristics of Microplastics in Surface Water of Lake Singkarak in Tanah Datar, West Sumatra, Indonesia. 2015.
Hübner, U., Spahr, S., Lutze, H., Wieland, A., Rüting, S., Gernjak, W., & Wenk, J. (2024). Advanced oxidation processes for water and wastewater treatment – Guidance for systematic future research. Heliyon, 10(9), e30402. https://doi.org/10.1016/j.heliyon.2024.e30402
Ibrahim, Y. S., Abd Razak, N. I., Roslan, N. S., Yusof, K. M. K. K., Mohd Ali, A. A., Omar, N. F., Chinglenthoiba, C., Mohamad, N. N., & Anuar, S. T. (2025). Morphochemical information on microplastic fibers found in edible tissue of local commercial fishes from the South China Sea and the Straits of Malacca for potential human consumption††Electronic supplementary information (ESI) available. See DOI: https:/. Environmental Science Advances, 4(6), 964–979. https://doi.org/https://doi.org/10.1039/d4va00425f
Jaafar, N., Azfaralariff, A., Musa, S. M., Mohamed, M., Yusoff, A. H., & Lazim, A. M. (2021). Occurrence, distribution and characteristics of microplastics in gastrointestinal tract and gills of commercial marine fish from Malaysia. Science of the Total Environment, 799. https://doi.org/10.1016/j.scitotenv.2021.149457
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Entradas de residuos plásticos desde la tierra al océano. Ciencia, 347(6223), 768–771. http://www.sciencemag.org/cgi/doi/10.1126/science.1260879%0Ahttps://www.sciencemag.org/lookup/doi/10.1126/science.1260352
Jian, M., Zhang, Y., Yang, W., Zhou, L., Liu, S., & Xu, E. G. (2020). Occurrence and distribution of microplastics in China’s largest freshwater lake system. Chemosphere, 261, 128186. https://doi.org/10.1016/j.chemosphere.2020.128186
Khan, M. T., Ahmad, M., Hossain, M. F., Nawab, A., Ahmad, I., Ahmad, K., & Panyametheekul, S. (2023). Microplastic removal by coagulation: a review of optimizing the reaction conditions and mechanisms. Water Emerging Contaminants and Nanoplastics, 2(4). https://doi.org/10.20517/wecn.2023.39
Kilinc, Z., Yesilay, G., Cetin, D., Suludere, Z., Rashdan, S., Hazeem, L., Bououdina, M., & Kyzas, G. Z. (2025). Photodegradation of polystyrene microplastics exposed to natural sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 468(April), 116462. https://doi.org/10.1016/j.jphotochem.2025.116462
Kılıç, E., Yücel, N., & Mübarek Şahutoğlu, S. (2022). First record of microplastic occurence at the commercial fish from Orontes River. Environmental Pollution, 307(June). https://doi.org/10.1016/j.envpol.2022.119576
Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. https://doi.org/10.1016/j.watres.2017.12.056
Lin, X., Gowen, A. A., Pu, H., & Xu, J. L. (2023). Microplastic contamination in fish: Critical review and assessment of data quality. Food Control, 153(March), 109939. https://doi.org/10.1016/j.foodcont.2023.109939
Liu, J., Zhang, T., Tian, L., Liu, X., Qi, Z., Ma, Y., Ji, R., & Chen, W. (2019). Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environmental Science & Technology, 53(10), 5805–5815. https://doi.org/10.1021/acs.est.9b00787
Mao, Y., Hu, Z., Li, H., Zheng, H., Yang, S., Yu, W., Tang, B., Yang, H., He, R., Guo, W., Ye, K., Yang, A., & Zhang, S. (2024). Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. Environmental Pollution, 349(March), 123863. https://doi.org/10.1016/j.envpol.2024.123863
Mohamad, N. A., Hamzah, S., Che Harun, M. H., Ali, A., Rasit, N., Awang, M., Rahman, W. R. W. A., Azmi, A. A. A. R., Abu Habib, A. A., Amri Zahid, M. S., Fahmi Mustofa, A. A., Latfi, S. A., Aripin, S. M., & Saad, R. (2021). Integration of copperas and calcium hydroxide as a chemical coagulant and coagulant aid for efficient treatment of palm oil mill effluent. Chemosphere, 281(October 2020), 130873. https://doi.org/10.1016/j.chemosphere.2021.130873
Nadir, H. M., Ahmed, A., Yates, C., Yates, L., & Ahmed, A. (2022). A Review of the Utilisation of Hydrated Lime (CL-90) in Engineering Applications and it’s Sustainability Implications. Journal of Materials and Polymer Science, September, 1–8. https://doi.org/10.47485/2832-9384.1017
Rafa, N., Ahmed, B., Zohora, F., Bakya, J., Ahmed, S., Ahmed, S. F., Mofijur, M., Chowdhury, A. A., & Almomani, F. (2024). Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environmental Pollution, 343(December). https://doi.org/10.1016/j.envpol.2023.123190
Ramakrishnan, D., & Sathiyamoorthy, M. (2024). Seasonal distribution, source apportionment and risk exposure of microplastic contaminants along the Muttukadu backwater estuary, Tamil Nadu, India. Results in Engineering, 23(July), 102776. https://doi.org/10.1016/j.rineng.2024.102776
Rommelfanger, N., Vowinckel, B., Wang, Z., Dohrmann, R., Meiburg, E., & Luzzatto-Fegiz, P. (2022). A simple criterion and experiments for onset of flocculation in kaolin clay suspensions. 1–18. http://arxiv.org/abs/2203.15545
Salazar-Gámez, L., Luna-Delrisco, M., Narváez-Jojoa, E., Salazar-Cano, R., Rosales-Delgado, D., Pinchao, D., Santander-Yela, E. I., Cortez-Lopera, J. D., Calderón-Estrada, L. M., Enríquez-Apraez, G. M., Revelo, M. C. B., Delgado-Garcés, S., & Rocha-Meneses, L. (2024). Turbidity Removal Performance of Selected Natural Coagulants for Water Treatment in Colombian Rural Areas. Civil Engineering Journal (Iran), 10(2), 655–667. https://doi.org/10.28991/CEJ-2024-010-02-020
Scott, R. (2015). Managing Marine Plastic Pollution: Policy initiatives to address wayward waste. Environmental Health Perspectives, 123(4), 90–94. https://doi.org/10.1289/ehp.123-A90
Tang, W., Li, H., Fei, L., Wei, B., Zhou, T., & Zhang, H. (2022). The removal of microplastics from water by coagulation: A comprehensive review. Science of the Total Environment, 851(July), 158224. https://doi.org/10.1016/j.scitotenv.2022.158224
Wan, Y., Yang, Y., & Zhou, W. (2025). Agricultural Plastic Mulch: A Brief Review of Development, Composition and Catalytic Upcycling Strategies. Catalysts, 15(4). https://doi.org/10.3390/catal15040310
Wang, Y., Tang, Z., Liu, Y., Qian, Y., Yang, S., Wang, A., Dong, Z., & Xing, B. (2025). Heterogeneous aggregation of microplastics and mineral particles in aquatic environments: Effects of surface functional groups, pH, and electrolytes. Environmental Chemistry and Ecotoxicology, 7(April), 848–858. https://doi.org/10.1016/j.enceco.2025.04.012
Yadai, T., & Suzuki, Y. (2023). Development of softening and ballasted flocculation as a pretreatment process for seawater desalination through a reverse osmosis membrane. Npj Clean Water, 6(1), 1–8. https://doi.org/10.1038/s41545-023-00226-0
Yin, X., Wu, J., Liu, Y., Chen, X., Xie, C., Liang, Y., & Li, J. (2022). Accumulation of microplastics in fish guts and gills from a large natural lake : Selective or non-selective ? ☆. Environmental Pollution, 309(July), 119785. https://doi.org/10.1016/j.envpol.2022.119785
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Zarah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.