PENYISIHAN LOGAM BESI DALAM SAMPEL AIR TANAH MENGGUNAKAN BIJI BUAH MATOA (POMETIA PINNATA) DENGAN METODE BIOSORBSI
Abstract
Pertumbuhan industri telah berkontribusi pada masalah lingkungan karena menghasilkan limbah cair atau padat sebagai produk sekunder setelah pemrosesan industri salah satunya limbah logam berat yang telah menjadi ancaman bagi dunia. Logam berat dapat menyebabkan efek toksik yang lebih serius, termasuk kanker, kerusakan otak, atau kematian, dan dapat merusak lingkungan. Besi adalah varian dari logam berat padat dan beracun yang ditemukan dalam kelompok IVA, terutama berbahaya saat tertelan oleh organisme hidup, terutama spesies manusia. Zat logam ini memiliki kecenderungan untuk menumpuk di dalam ekosistem, dan penghapusannya melalui cara biologis terbukti sangat menantang. Salah satu metode yang bisa digunakan adalah biosorpsi dengan mengggunakan biji buah matoa (Pometia Pinnata) sebagai adsorben. Tujuan dari penelitian ini adalah untuk mengetahui kemampuan biji matoa (Pometia Pinnata) dalam mengurangi kandungan Logam besi didalam sampel. Metode biosorpsi yang digunakan didalam penelitian ini secara batch. Hasil yang diperoleh adalah tidak terlihat pengaruh yang signifikan perubahan warna pada air tanah sebelum dan dikontakkan dengan biosorben dari biji matoa. Pada penentuan pHpzc yaitu pada pH 4 dengan waktu kontak optimum 60 menit dan dosis sampel 0,1 g serta kecepatan pengadukan 200 rpm Dimana kecepatan pengadukan sangat mempengaruhi kemampuan daya serap adsorben dengan kapasitas adsorpsi 0,341 mg/L. Biji buah matoa memiliki kemampuan dalam mengurangi kandungan logam berat Fe didalam air tanah.
References
Agustina, T. E., Habiburrahman, M., Amalia, F., Arita, S., Faizal, M., Novia, & Gayatri, R. (2022). Reduction of Copper, Iron, and Lead Content in Laboratory Wastewater Using Zinc Oxide Photocatalyst under Solar Irradiation. Journal of Ecological Engineering, 23(10), 107–115. https://doi.org/10.12911/22998993/152341
Alabi, O., Olanrewaju, A. A., & Afolabi, T. J. (2020). Process optimization of adsorption of Cr(VI) on adsorbent prepared from Bauhinia rufescens pod by Box-Behnken Design. Separation Science and Technology (Philadelphia), 55(1), 47–60. https://doi.org/10.1080/01496395.2019.1577436
Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 27(1), 183–193. https://doi.org/10.1080/25765299.2020.1756177
Ameen, M. M., Moustafa, A. A., Mofeed, J., Hasnaoui, M., Olanrewaju, O. S., Lazzaro, U., & Guerriero, G. (2021). Factors affecting efficiency of biosorption of fe (Iii) and zn (ii) by ulva lactuca and corallina officinalis and their activated carbons. Water (Switzerland), 13(23). https://doi.org/10.3390/w13233421
Bahaa, S., Al-Baldawi, I. A., Yaseen, S. R., & Abdullah, S. R. S. (2019). Biosorption of heavy metals from synthetic wastewater by using macro algae collected from Iraqi marshlands. Journal of Ecological Engineering, 20(11), 18–22. https://doi.org/10.12911/22998993/113415
El-Defrawy, M. M., Kenawy, I. M. M., Zaki, E. G., & Eltabey, R. M. (2019). Adsorption of the anionic dye (diamond fast brown Ke) from textile wastewater onto chitosan/montmorillonite nanocomposites. Egyptian Journal of Chemistry, 62(12), 2183–2193. https://doi.org/10.21608/EJCHEM.2019.12467.1775
Fauzia, S., Aziz, H., Dahlan, D., Namieśnik, J., & Zein, R. (2019). Adsorption of Cr(VI) in aqueous solution using sago bark (metroxylon sagu) as a new potential biosorbent. Desalination and Water Treatment, 147, 191–202. https://doi.org/10.5004/dwt.2019.23577
Gök, C., Aytas, S., & Sezer, H. (2017). Modeling uranium biosorption by Cystoseira sp. and application studies. Separation Science and Technology (Philadelphia), 52(5), 792–803. https://doi.org/10.1080/01496395.2016.1267212
Gumara Yudhistira, Y., Susilaningsih, E., & Nuni Widiarti, dan. (2018). Efisiensi Penurunan Kadar Logam Berat (Cr dan Ni) dalam Limbah Elektroplating secara Elektrokoagulasi Menggunakan Elektroda Aluminium. Indonesian Journal of Chemical Science, 7(1), 29–34. http://journal.unnes.ac.id/sju/index.php/ijcs
Hevira, L., Zilfa, Rahmayeni, Ighalo, J. O., & Zein, R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell. Journal of Environmental Chemical Engineering, 8(5), 104290. https://doi.org/10.1016/j.jece.2020.104290
Isik, B., Ugraskan, V., & Cankurtaran, O. (2022). Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Separation Science and Technology (Philadelphia), 57(6), 854–871. https://doi.org/10.1080/01496395.2021.1956540
Kriswandana, F. (2020). Journal of Global Pharma Technology The Effectiveness of Reduction of Weight Metal Contents of Pb , and Hg in Water Electro-coagulation Methodfile:///E:/4. MEY/5. KANTOR/4. TUGAS TAMBAHAN DOSEN/p win/9.pdf. Journal of Global Pharma Technology, 12(09), 306–313. http://www.jgpt.co.in/index.php/jgpt/article/download/3776/2900
Kustomo, K., Faza, N. L. Z., & Haarstrick, A. (2022). Adsorption of Cd (II) into Activated Charcoal from Matoa Fruit Peel. Walisongo Journal of Chemistry, 5(1), 83–93. https://doi.org/10.21580/wjc.v5i1.11755
Morosanu, I., Teodosiu, C., Paduraru, C., Ibanescu, D., & Tofan, L. (2017). Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnology, 39, 110–124. https://doi.org/10.1016/j.nbt.2016.08.002
Nadeem, R., Manzoor, Q., Iqbal, M., & Nisar, J. (2016). Biosorption of Pb(II) onto immobilized and native Mangifera indica waste biomass. Journal of Industrial and Engineering Chemistry, 35, 185–194. https://doi.org/10.1016/j.jiec.2015.12.030
Podder, M. S., & Majumder, C. B. (2017). Simultaneous biosorption and bioaccumulation: a novel technique for the efficient removal of arsenic. In Sustainable Water Resources Management (Vol. 3, Issue 4). Springer International Publishing. https://doi.org/10.1007/s40899-017-0103-x
Putra, A., Fauzia, S., Deswati, Arief, S., & Zein, R. (2022). Preparation, characterization, and adsorption performance of activated rice straw as a bioadsorbent for Cr(VI) removal from aqueous solution using a batch method. Desalination and Water Treatment, 264(32), 121–132. https://doi.org/10.5004/dwt.2022.28562
Ren, G., Jin, Y., Zhang, C., Gu, H., & Qu, J. (2015). Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environmental Safety, 117, 141–148. https://doi.org/10.1016/j.ecoenv.2015.03.033
Sagadevan, S., Fatimah, I., Egbosiub, T. C., Alshahateet, S. F., Lett, J. A., Weldegebrieal, G. K., Le, M. V., & Johan, M. R. (2022). Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater. Bulletin of Chemical Reaction Engineering and Catalysis, 17(2), 430–450. https://doi.org/10.9767/BCREC.17.2.13948.430-450
Sahmoune, M. N. (2018). Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchemical Journal, 141(2017), 87–95. https://doi.org/10.1016/j.microc.2018.05.009
Sibi, G. (2016). Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy and Environment, 1(2), 172–177. https://doi.org/10.1016/j.gee.2016.08.002
Sihotang, Y. M., Windiasfira, E., David, H., Barus, G., & Novi-, R. P. (2017). Science & Technology Indonesia against paracetamol-induced liver disease in rats. 2, 92–95.
Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T., & Gong, G. (2018). Removal of Pb(II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arabian Journal of Chemistry, 11(1), 99–110. https://doi.org/10.1016/j.arabjc.2015.06.011
Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., & Fang, P. (2016). Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems. Biochemical Engineering Journal, 105, 27–35. https://doi.org/10.1016/j.bej.2015.08.017
Zein, R., Akmal, C., Safni, S., Fauzia, S., & Ramadhani, P. (2023). Banana Stem (Musa balbisiana Colla) as Potential Biosorbent to Remove Methylene Blue Dye in Wastewater: Isotherm, Kinetic, Thermodynamic Studies and Its Application. Applied Environmental Research, 45(3). https://doi.org/10.35762/AER.2023015
Zein, R., Tomi, Z. B., Fauzia, S., & Zilfa, Z. (2020). Modification of rice husk silica with bovine serum albumin (BSA) for improvement in adsorption of metanil yellow dye. Journal of the Iranian Chemical Society, 17(10), 2599–2612. https://doi.org/10.1007/s13738-020-01955-6
Zulfahmi, Pertiwi, S. A., Rosmaina, Elfianis, R., Gulnar, Z., Zhaxybay, T., Bekzat, M., & Zhaparkulova, G. (2023). Molecular identification of mother trees of four matoa cultivars (Pometia pinnata Forst & Forst) from Pekanbaru City, Indonesia using RAPD markers. Biodiversitas, 24(3), 1524–1529. https://doi.org/10.13057/biodiv/d240323
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Zarah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.