MODIFIKASI TEORITIK STRUKTUR JEMBATAN π ZAT WARNA TIPE D-π-A SEBAGAI SENSITIZER PADA SEL SURYA BERBASIS FENOL

Authors

  • Resin Putra Teja Kusuma Universitas Andalas
  • Imelda Universitas Andalas
  • Suryati Universitas Andalas

Abstract

Salah satu jenis teknologi berbasis sel surya ialah Dye Sensitized Solar Cell (DSSC). Pada penelitian terkait DSSC zat warna menjadi topik paling banyak diteliti karena dengan memodifikasi struktur dari zat warna maka akan dapat meningkatkan kinerja dan efisiensi dari DSSC. Zat warna organik merupakan sensitizer (pemeka cahaya) yang sangat cocok digunakan untuk perangkat DSSC karena ramah lingkungan, berlimpah dan minim biaya. Pada penelitian ini menggunakan fenol sebagai basis dan memvariasikan jembatan π dari molekul zat warna tipe D-π-A (Donor – Jembatan π – Akseptor). Jembatan π yang digunakan diantaranya butadiena, heksatriena, antrasena, fenantrena, bifuran dan bithiopen yang disimbolkan dengan Fπ1, Fπ2, Fπ3, Fπ4, Fπ5 dan Fπ6. Penelitian ini menggunakan Gaussian 16W sebagai program utama, Density Functional Theory (DFT) dan Time Dependent-DFT (TD-DFT) merupakan metode perhitungan dengan basis B3LYP/6-31G. Dalam menentukan efisiensi dari molekul zat warna sebagai sensitizer pada perangkat DSSC maka parameter perhitungan yang digunakan ialah serapan panjang gelombang maksimum (λmaks), nilai bandgap, energi eksitasi, ∆Ginj, ∆Greg, momen dipol, oscillator strength (f), tegangan (VOC), dan nilai Light Harvesting Efficiency (LHE). Berdasarkan hasil penelitian, zat warna Fπ6 dengan variasi jembatan π bithiopen merupakan zat warna terbaik untuk dijadikan sebagai sensitizer dengan nilai bandgap 2,77 eV dan λ sebesar 456,96 nm menunjukkan zat warna mampu menyerap energi sinar tampak dari cahaya matahari. Sedangkan nilai momen dipol 9,78 D, energi eksitasi 2,71 eV, ΔGinj -1,39 eV, ΔGreg 0,52 eV, dan nilai VOC 1,44 eV menunjukkan semakin mudahnya proses transfer elektron pada zat warna dan dari zat warna ke perangkat DSSC.

References

Babu, D. D., Gachumale, S. R., Anandan, S., & Adhikari, A. V. (2015). New D-π-A type indole based chromogens for DSSC: Design, synthesis and performance studies. Dyes and Pigments, 112, 183–

191.

https://doi.org/10.1016/j.dyepig.2014.07.0 06

Britel, O., Fitri, A., Touimi Benjelloun, A., Slimi, A., Benzakour, M., & Mcharfi, M. (2022). Theoretical design of new carbazole based organic dyes for DSSCs applications. A DFT/TD-DFT insight.

Journal of Photochemistry and Photobiology A: Chemistry, 429(November 2021), 113902.

https://doi.org/10.1016/j.jphotochem.2022

.113902

Daniswara, A., Raydiska, G., & Timotius, Y. (2020). Strategi Implementasi Dye Sensitized Solar Cell (DSSC) di Indonesia. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 4(2), 9–15.

https://doi.org/10.30588/jo.v4i2.835 Deswita, E. et. a. (2021). Modifikasi Struktur

Zat Warna Kuinolin Untuk Meningkatkan Kinerja Sel Surya Menggunakan Metode DFT. Jurnal Kimia Saintek Dan Pendidikan, V(2), 10.

El-Shishtawy, R. M., Elroby, S. A., Asiri, A. M., & Müllen, K. (2016). Optical absorption spectra and electronic properties of symmetric and asymmetric squaraine dyes for use in DSSC solar cells: DFT and TD- DFT studies. International Journal of Molecular Sciences, 17(4), 1–12. https://doi.org/10.3390/ijms17040487

Fadda, A. A. (2023). derivatives for dye-

sensitized solar cell applications †. i, 9720–9731.

https://doi.org/10.1039/d3ra00609c Fernandes, S. S. M., Mesquita, I., Andrade, L.,

Mendes, A., Justino, L. L. G., Burrows,

H. D., & Raposo, M. M. M. (2017).

Synthesis and characterization of push- pull bithiophene and thieno [ 3 , 2- b ] thiophene derivatives bearing an ethyne linker as sensitizers for dye-sensitized solar cells. Organic Electronics, 49, 194–

205.

https://doi.org/10.1016/j.orgel.2017.06.04 8

Gunawardhana, P., Balasooriya, Y., Kandanapitiye, M. S., Chau, Y. F. C., Kooh, M. R. R., & Thotagamuge, R. (2024). Optoelectronic Characterization of Natural Dyes in the Quest for Enhanced Performance in Dye-Sensitized Solar Cells: A Density Functional Theory Study. Applied Sciences (Switzerland), 14(1).

https://doi.org/10.3390/app14010188 Hachi, M., Slimi, A., Fitri, A., Benjelloun, A. T.,

El khattabi, S., Benzakour, M., Mcharfi, M., Khenfouch, M., Zorkani, I., & Bouachrine, M. (2021). Theoretical design and characterization of D-A1-A based organic dyes for efficient DSSC by altering promising acceptor (A1) moiety. Journal of Photochemistry and Photobiology A: Chemistry, 407, 113048. https://doi.org/10.1016/j.jphotochem.2020

.113048

Hosseinzadeh, B., Beni, A. S., Azari, M., Zarandi, M., & Karami, M. (2016). Novel D-π-A type triphenylamine based chromogens for DSSC: Design, synthesis and performance studies. New Journal of Chemistry, 40(10), 8371–8381.

https://doi.org/10.1039/c6nj01314g Imelda, Emriadi, Aziz, H., & Santoni, A. (2022).

Computational Design of Novel Coumarin Sensitizers To Improve the Efficiency of Solar Cells. Moroccan Journal of Chemistry, 10(1), 180–190.

Imelda, I. (2020). Optimalisasi Struktur Π- Konjugasi Pada Zat Warna Organik Tipe D-Π-a. Journal of Research and Education Chemistry, 2(2), 61. https://doi.org/10.25299/jrec.2020.vol2(2)

.5724

Imelda, I., Aziz, H., Aziz, H., & Putri, H. (2022). Modifikasi Struktur Zat Warna Berbasis Trifenilamin untuk Meningkatkan Kinerja Dye-Sensitized Solar CELLs (DSSCs): Metode Komputasi. Journal of Research and Education Chemistry, 4(1), 34. https://doi.org/10.25299/jrec.2022.vol4(1)

.9357

Islam, F., Waqas, A., Khan, S., Ali, A., Sattar, A., Tariq, M. A., Arshad, M., & Mehboob, M. Y. (2023). Anthracene- bridged sensitizers for environmentally compatible dye-sensitized solar cells: In silico modelling and prediction. Journal

of Molecular Graphics and Modelling, 122(March). https://doi.org/10.1016/j.jmgm.2023.1084 96

Jadhav, M. M., Vaghasiya, J. V., Patil, D. S., Soni, S. S., & Sekar, N. (2018). Structure- efficiency relationship of newly synthesized 4-substituted donor-π- acceptor coumarins for dye-sensitized solar cells. New Journal of Chemistry, 42(7), 5267–5275.

https://doi.org/10.1039/c7nj04954d Kandregula, G. R., Mandal, S., & Ramanujam,

K. (2021). Molecular engineering of near- infrared active boron dipyrromethene moiety with various donors and acceptors for tuning the absorption behavior and electron injection of the resultant dyes. Journal of Photochemistry and Photobiology A: Chemistry, 410(October 2020), 113161.

https://doi.org/10.1016/j.jphotochem.2021

.113161

Kumar, C., Raheem, A. A., Mohan, R., Shanmugam, R., & Praveen, C. (2021). Unravelling the miniscule size effect of auxiliary donor in D-D-π-A type dipolar photosensitizers on quasi-solid state DSSC performance. Dyes and Pigments, 185, 108959.

https://doi.org/10.1016/j.dyepig.2020.108 959

Kusumawati, Y., Ivansyah, A. L., Martoprawiro,

M. A., & Oktavia, L. W. (2019).

Computational Study of Structure and Photophysical Properties Relationship of Carbazoles with Four Anchoring Groups for DSSC : Consideration for Light Harvesting and Electron Injection. 46(6), 1219–1228.

Lu, F., Yang, G., Xu, Q., Zhang, J., Zhang, B., & Feng, Y. (2018). Tailoring the benzotriazole (BTZ) auxiliary acceptor in a D-A′-π-A type sensitizer for high performance dye-sensitized solar cells (DSSCs). In Dyes and Pigments (Vol.

158). Elsevier Ltd. https://doi.org/10.1016/j.dyepig.2018.05.0 44

Naik, P. (2017). New carbazole based metal-free organic dyes with D-p-A-p-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. In A. V. ; Elmorsy, Mohamed R; Su, Rui; Babu, Dickson D; El-Shafei, Ahmed; Adhikari (Ed.), Solar

Energy (p. 11). Elsevier Ltd. https://doi.org/dx.doi.org/10.1016/j.solene r.2017.05.088

Nalçakan, H., Kurtay, G., Sarıkavak, K., Şen, N., & Sevin, F. (2023). Computational insights into bis-N,N-dimethylaniline based D-π-A photosensitizers bearing divergent-type of π-linkers for DSSCs. Journal of Molecular Graphics and Modelling, 122(February). https://doi.org/10.1016/j.jmgm.2023.1084 85

Obotowo, I. N., Obot, I. B., & Ekpe, U. J. (2016). Organic sensitizers for dye- sensitized solar cell (DSSC): Properties from computation, progress and future perspectives. Journal of Molecular Structure, 1122, 80–87. https://doi.org/10.1016/j.molstruc.2016.05

.080

Ouared, I., & Rekis, M. (2021). Efficient triphenyleamine-based organic sensitizers for dye sensitized solar cells: Density functional theory study. Computational and Theoretical Chemistry, 1202(March). https://doi.org/10.1016/j.comptc.2021.113 309

Podlesný, J., Jelínková, V., Pytela, O., Klikar, M., & Bureš, F. (2020). Acceptor-induced photoisomerization in small thienothiophene push-pull chromophores. Dyes and Pigments, 179(January), 2–10. https://doi.org/10.1016/j.dyepig.2020.108 398

Vuai, S. A. H., Khalfan, M. S., & Babu, N. S. (2021). DFT and TD-DFT studies for optoelectronic properties of coumarin based donor-π-acceptor (D-π-A) dyes: applications in dye-sensitized solar cells (DSSCS). Heliyon, 7(11), e08339.

https://doi.org/10.1016/j.heliyon.2021.e08 339

Wazzan, N., & Irfan, A. (2020). Promising architectures modifying the D-π-A architecture of 2,3-dipentyldithieno[3,2- f:2′,3′-h]quinoxaline-based dye as efficient sensitizers in dye-sensitized solar cells: A DFT study. Materials Science in Semiconductor Processing, 120(February), 105260. https://doi.org/10.1016/j.mssp.2020.10526 0

Xu, J., Zhao, J., & Liu, W. (2023). A

comparative study of renewable and fossil fuels energy impacts on green development in Asian countries with divergent income inequality. Resources Policy, 85(PA), 104035.

https://doi.org/10.1016/j.resourpol.2023.1 04035

Yoosuf, M., Pradhan, S. C., Soman, S., & Gopidas, K. R. (2019). Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cells. Solar Energy, 188(June), 55–65. https://doi.org/10.1016/j.solener.2019.05. 051

Downloads

Published

2025-06-01