Kajian Hidrologi Debit Puncak Penyebab Banjir Bandang Menggunakan Pemodelan Hidrograf Satuan Sintesis-SCS (HSS-SCS)

Authors

  • Deni Sabriyati Manajemen Sumberdaya Perairan, Fakultas Ilmu Kelautan dan Perikanan, Universitas Maritim Raja Ali Haji, Tanjungpinang, Indonesia 29111
  • M Pramono Hadi Geo-information for Spatial Planning and Disaster Risk Management, Ilmu Lingkungan, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281; Pusat Studi Lingkungan Hidup, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281

DOI:

https://doi.org/10.31629/akuatiklestari.v5i2.4527

Keywords:

Peak Discharge, Hydrological Analysis, Synthetic Unit Hydrograph (SUH), HEC-HMS, Flood Modelling

Abstract

Siklus hidrologi merupakan hal terpenting dalam memahami proses fisik yang mengendalikan distribusi dan pergerakan air. Salahsatu proses siklus hidrologi yang paling berbahaya adalah hujan karena mampu menyebabkan bencana di lingkungan perairan seperti banjir dan banjir bandang. Penelitian ini merupakan sebuah kajian hidrologi di Sub-DAS Bt. Kuranji, Provinsi Sumatera Barat. Tujuan penelitian ini adalah mengetahui debit puncak penyebab banjir bandang akibat curah hujan harian melalui analisis karakteristik hidrograf banjir (HSS) menggunakan pemodelan hidrologi berbasis SIG dan HEC-HMS. Data yang digunakan yaitu DEM IFSAR, data hujan selama 38 tahun, dan citra satelit Quickbird. Data diolah menggunakan perangkat lunak HEC-HMS dan HEC-GeoHMS pada Arc-GIS untuk mendapatkan nilai hujan rerata kawasan (MAP), SCS-CN dan Hidrograf banjir dari debit puncak. Hasil penelitian menunjukkan bahwa hujan terkosentrasi selama 3 jam dengan Puncak hujan efektif (Pe) pada periode ulang 2, 5, 10, 20, 50, dan 100 tahun rata-rata terjadi antara jam ke-2 dan jam ke-3 turunnya hujan. Debit puncak (Q) tiap periode ulang secara berurutan yaitu 168,4 m3/dt, 287,9 m3/dt, 381,5 m3/dt, 479,6 m3/dt, 616,4 m3/dt, dan 724,9 m3/dt.

Downloads

Download data is not yet available.

References

Abuzied, S., Yuan, M., Ibrahim, S., Kaiser, M. & Saleem, T. (2016). Geospatial Risk Assessment of Flash Floods in Nuweiba Area, Egypt, J. Arid Environ. 133, 54–72.

Afrianto, Y. (2015). Pemodelan Bahaya Banjir dan Analisis Risiko Banjir, Tesis. UGM: Yogyakarta.

Albano, R., Mancusi, L., Sole, A., & Adamowski, J. (2015). Collaborative Strategies for Sustainable EU Flood Risk Management: FOSS and Geospatial Tools—Challenges and Opportunities for Operative Risk Analysis. ISPRS International Journal of Geo-Information, 4(4), 2704–2727.

Atviana. F., Nurritasari, & Jetten, V.G. (2015). OpenLISEM Flash Flood Modelling Application in Logung Sub-Catchment, Central Java. Indonesian Journal of Geography, 47(2), 132–141.

Azmeri, H. & Vadiya, R. (2016). Identification of flash flood hazard zones in mountainous small watershed of Aceh Besar Regency, Aceh Province, Indonesia. The Egyptian Journal of Remote Sensing and Space Sciences, 19(1), pp.143–160.

BNPB [Badan Nasional Penanggulangan Bencana]. (2012). Peraturan Kepala BNPB No 2 Tahun 2012 tentang Pedoman Umum Pengkajian Risiko Bencana.

BNPB [Badan Nasional Penanggulangan Bencana]. (2016). Bencana Di Indonesia Sampai Mei 2017. (www.dibi.bnpb.go.id). Diakses 22 Mei 2017.

Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: The HYDRATE project. Environmental Science and Policy, 14(7), 834–844.

Creutin, J.D., & Borga, M. (2003). Radar hydrology modifies the monitoring of flash flood hazard. Hydrological Processes 17 (7), 1453–1456

Dawod, G. M., Koshak, N. A., & Al, E. T. (2011) Developing GIS-Based Unit Hydrographs for Flood Management in Makkah Metropolitan Area , Saudi Arabia, 2011(April), 153–159.

Dawod, G. M. (2011). GIS-based Spatial Mapping of Flash Flood Hazard in Makkah City, Saudi Arabia. Journal of Geographic Information System, (3), 225-231.

Dip, M., Parikesit, N.A., & Utomo, H. (2012). “Buku Petunjuk Tindakan dan Sistem Mitigasi Banjir Bandang. Dirjen SDA,” Kementrian Pekerjaan Umum, (www.pu.go.id), Diakses Oktober 2016.

Feldman, A. D. (2000). Hydrologic Modeling System HEC-HMS, Technical Reference Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC, Davis, CA- USA.

Finkl, C. W. (2000). Identification of Unseen Flood Hazard Impacts in Southeast Florida through Integration of Remote Sensing and Geographic Information System Techniques. Environmental Geosciences, 7(3), 119–136.

Garambois, P. A., Roux, H., Larnier, K., Labat, D., & Dartus, D. (2015). Parameter regionalization for a process-oriented distributed model dedicated to flash floods. Journal of Hydrology, 525, 383–399.

Georgakakos, K. P. (2006). Analytical results for operational flash flood guidance. Journal of Hydrology, 317(1–2), 81–103.

Harto, S. B. & Dip, H. (1993). “Analisis Hidrologi,” Jakarta: PT. Gramedia Pustaka Utama.

Harto, S. B. (2000). “Hidrologi: Teori Masalah Penyelesian,” Yogyakarta: Nafiri Offset.

Horton, R. (1945). Erosional Development of Streams and Their Drainage Basins, Hydrophysical Approach to Quantitative Morphology, Geol Soc Am Bull, (56), 275–370.

Jonkman, S. N. (2005). Global Perspectives on Loss of Human Life Caused by Floods. Journal of Natural Hazards, (34), 151–175.

Karagiorgos, K., Thaler, T., Hübl, J., Maris, F., & Fuchs, S. (2016). Multi-vulnerability analysis for flash flood risk management. Natural Hazards, (82), 63–87.

Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1–2), 118–133.

Merwade, V. (2012). “Hydrologic Modeling using HEC-HMS Opening a HEC-HMS Project,” Purdue University: USA.

SCS (US Soil Conservation Service). (1985). National Engineering Handbook, Washington, US Department of Agriculture, US: Government Printing Office.

Smith, D. I. (1981). Actual and Potential Flood Damage: A Case Study for Urban Lismore, NSW, Australia. Journal of Appl. Geography, (1), 31–39.

Smith, P. J., Panziera, L. & Beven, K. J. (2014). Forecasting Flash Floods Using Data-Based Mechanistic Models and NORA Radar Rainfall Forecasts Forecasting Flash Floods Using Data-Based Mechanistic Models and NORA Radar Rainfall Forecast. Journal of Hydrological Sciences, 59(7), 1403-1417.

Triatmodjo, B. (2010). “Hidrologi Terapan,” Yogyakarta: Beta Offset.

UCAR [The University Corporation for Atmospheric Researh]. (2010). Flash Flood Early Warning System Reference Guide, (http://www.meted.ucar.edu), Diakses Agustus 2016.

USDA-SCS. (1986). Soil Hydrology Classification, (http:// wmc.ar.nrcs.usda.gov), Diakses November 2016.

Wisner, B. (2004). Turning Knowledge into Timely and Appropriate Action: Reflections on IADB/IDEA Program of Disaster Risk Indicators. IDB/IDEA Program of Indicators for Risk Management, Manizales: National University of Colombia: 18–24.

Yin, J., Yu, D., Yin, Z., Liu, M., & He, Q. (2016). Evaluating The Impact and Risk of Pluvial Flash Flood on Intra-Urban Road Network: A Case Study in The City Center of Shanghai, China. Journal of Hydrology, 537, 138–145.

Yogi. (2012). Sadar Bencana Masih Retorika, (www.PadangEkspress.co.id), Diakses September 2012.

Youssef, A. M. & Pradhan, B. (2009). Geomorphological Hazards Analysis Along The Egyptian Red Sea Coast Between Safaga and Quseir. Natural Hazards and Earth System Sciences, (9), 751–766.

Published

2022-05-28

How to Cite

Sabriyati, D., & Hadi, M. P. (2022). Kajian Hidrologi Debit Puncak Penyebab Banjir Bandang Menggunakan Pemodelan Hidrograf Satuan Sintesis-SCS (HSS-SCS). Jurnal Akuatiklestari, 5(2), 80–90. https://doi.org/10.31629/akuatiklestari.v5i2.4527