INTERPRETASI DATA DERAJAT KRISTANILITAS DAN UKURAN KRISTAL KARBON AKTIF AMPAS TEBU TERAKTIVASI KOH, H₃PO₄, Na₂S₂O₃, KMnO₄, KSCN, FeCl₃

DATA INTERPRETATION OF CHRISTANILITY AND SIZE OF ACTIVATED CARBON CRYSTALS OF ACTIVATED CANES KOH, H₃PO₄, Na₂S₂O₃, KMnO₄, KSCN, FeCl₃

Wiwin R. Kunusa^{1*,} Hendrik Iyabu², Ishak Isa³

^{1,2,3}Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, Jalan Prof. Dr. Ing. B. J. Habibie, Indonesia

* e-mail korespondensi : wiwien.rewini_kimia@ung.ac.id

Abstrak

Penelitian ini mengkaji tentang pembuatan dan karakterisasi karbon aktif ampas tebu (KAAT) menggunakan metode aktivasi fisik dan aktivasi kimia. Digunakan variasi suhu karbonasi 450° C dan 650° C dan aktivator H₃PO₄ 10%, FeCl₃ 10% dan KMnO₄ 10%. Hasil karakterisasi derajat kristanilitas dan ukuran Kristal karbon aktif menggunakan Instrumen pembacaan hasil Difragtogram XRD. Variasi aktivator dan variasi suhu dilakukan tujuannya untuk menghasilkan produk arangaktif yang memiliki permukaan spesifik, porositas, kerapatan dan ketahanan mekanis yangtinggi.Berdasarkan hasil perhitungan derajat kristalinitas sampel secara keseluruhan cenderung meningkat berdasarkan kenaikan suhu.

Kata kunci: karbonaktif, ampastebu, parameter kisi, ukuran kristal

Abstract

This study examines the manufacture and characterization of bagasse activated carbon (KAAT) using physical activation and chemical activation methods. Carbonation temperature variations of 450° C and 650° C were used and activators of H₃PO₄ 10%, FeCl₃ 10% and KMnO₄ 10%. The results of the characterization of the degree of crystallinity and the size of the activated carbon crystals using the XRD Difragtogram reading instrument. Activator variations and temperature variations are carried out in order to produce activated charcoal products that have high specific surface, porosity, density and mechanical resistance. Based on the calculation results, the degree of crystallinity of the sample as a whole tends to increase with temperature increase.

Keywords: Activated Carbon, Baggase, Lattice Parameters, Crystal Size

PENDAHULUAN

Ampas tebu sebagai salah satu residu agroindustri lignoselulosa merupakan sumber prekursor karbon aktif memiliki reaktivitas permukaan tinggi. Kelimpahan dan ketersediaan limbah ini dialam sehingga banyak diaplikasikan pada berbagai riset (Zhang et al., 2014); (Ioannidou & Zabaniotou, 2007); (Sarker et al., 2017). Karbon aktif (KA) adalah zat padat hitam menyerupai granular arang/bubuk, memiliki kapasitas adsorpsi tinggi, porositas dan luas permukaan $\pm 3000 \text{ m}^2/\text{g}$ yang dapat dimodifikasi

melalui metode dan kondisi pemrosesan seperti laju pemanasan, suhu, waktu, media pengaktif dan derajat aktivasi (Ahiduzzaman & Islam, 2016).

Penggunaan zat pengaktif untuk produksi termokimia karbon aktif dengan karakter fisikokimia tinggi memerlukan metode inovatif yang menghasilkan sedikit kontaminasi tanpa kehilangan energi, tetapi memiliki daya adsorpsi yang tinggi. Penggunaan microwave, dalam proses pirolisis sangat inovatif dapat meningkatkan proses aktivasi dalam waktu 1-4 jam pada suhu 500-1200°C. Namun diatas suhu 1200°C efisiensinya menurun dengan cepat karena terjadinya pemecahan molekul. Zat pengaktif basa, asam dan zat-zat anorganik efektif dalam produksi arang aktif tetapi permasalahan muncul seperti ZnCl₂ dan asam anorganik yang sulit dihilangkan dengan proses pencucian (Ukanwa et al., 2019). Karbon aktif sebagian besar berupa padatan amorf dan permukaan matriks bermuatan positif (+), banyak digunakan sebagai adsorben dalam pengolahan air limbah (Doczekalska et al., 2015), adsorpsi logam berat, pewarna, senyawa organik/anorganik, sebagai katalis dan bahan pembuatan kapasitor dan baterai dasar (González-García, 2018), (Kyzas & Deliyanni, 2015). Arang aktif mengandung berbagai komponen biomassa seperti selulosa (37,65%) memiliki gugus aktif CO pada atom C2, C3, C6 dan lignin (22,09%) yang mengandung gugus fenolat. berpotensi untuk dikonversi menjadi sumber karbon pada proses adsorpsi (Purnama et al., 2019); (Solechan, 2001); (Kharat, 2015).

Karakterisasi karbon aktif dengan difraksi sinar-X dilakukan untuk mengetahui gambaran utama ukuran partikel dan derajat kristalinitas. Besaran yang menyatakan banyaknya kandungan kristal dalam suatu material dengan membandingkan luasan kurva kristal dengan total luasan wilayah amorf dan wilayah kristalin disebut derajat kristanilitas. Derajat kristalinitas dihitung menggunakan parameter FWHM (Full Width at Half Maximum). Fraksi luas kristal atau amorf dihitung dengan mengkalikan FWHM dengan intensitas. FWHM dianggap setengah alas dan intensitas sebagai tingginya. Ukuran kristal dihitung dengan menggunakan persamaan Scherrer yaitu B adalah FWHM, λ adalah panjang gelombang yang digunakan yaitu 1,78897x10⁻¹⁰ m dan k adalah konstanta yang nilainya bervariasi, untuk tulang nilainya adalah 0,9 (González-García, 2018). Harga FWHM berbanding terbalik dengan ukuran kristal. Harga FWHM yang semakin kecil menunjukkan ukuran kristal yang semakin besar

METODE PENELITIAN

Raw material berasal dari limbah ampas tebu Pabrik Gula PT.Tolangohula, Paguyaman Kabupaten Gorontalo. Bahan kimia yang digunakan H₃PO₄ 10%, FeCl₃ 10%, KMnO₄ 10%, KOH 10%, Na2S2O3 10% dan KSCN 10% dan aquadest. Penelitian di Laboratorium Kimia FMIPA UNG, Laboratorium Kimia Organik Universitas Brawijaya, Malang dan Laboratorium Geologi, Bandung. Ayakan digital ukuran partikel 80 mesh, neraca analitik, furnace, peralatan gelas dan oven. Instrumen analisis X-Ray Difraction Pananalitical dan negara produksi dan SEM-EDS JEOL JSM-6360LA, Japan, di laboratorium Geologi, Bandung.

ALAT DAN BAHAN

Instrumen analisis yang digunakan X-Ray Difraction dan SEM-EDS JEOL JSM-6360LA, Japan, di laboratorium Geologi, Bandung. Bahan kimia yang digunakan H₃PO₄ 10%, FeCl₃ 10%, KMnO₄ 10%, KOH 10%, Na₂S₂O3 10% dan KSCN 10% e.g.,

PROSEDUR PENELITIAN

1. Pembuatan dan Aktivasi Kimia Karbon Aktif Ampas Tebu (KAAT)

Prosedur modifikasi [Amit Bhatnagar, et al 2015]. Sampel ampas tebu dengan ukuran partikel 80 mesh diaktivasi dalam larutan H_3PO_4 10%, FeCl₃ 10%, KMnO₄ 10%, (ratio 1:10) selama 2 jam pada suhu 80^oC kemudian disaring dan dikeringkan dalam oven suhu 100^oC selama 24 jam. Selanjutnya proses karbonisasi fisik, suhu pemanasan 450^oC dan 600^oC. Produk KAAT disimpan dalam eksikator untuk analisis lebih lanjut.

Gambar 1. Diagram Alir Pembuatan KKAT

Tabel 1. Jenis	Aktivator	dan	Kondisi	Suhu	Karbonasi
----------------	-----------	-----	---------	------	-----------

Kode sampel	Sampel No	Kondisi Aktivasi	Suhu Karboni sasi (⁰ C)
KAAT/H ₃ PO ₄ 10%/450 ⁰ C	1	H ₃ PO ₄ 10% wt.ratio 1 : 10	450
KAAT / H ₃ PO ₄ 10%/600	2	H ₃ PO ₄ 10% wt.ratio 1: 10	600

KAAT /FeCl ₃ 10%/450	3	FeCl ₃ 10% wt.ratio 1 : 10	450
KAAT / FeCl ₃ 10%/600	4	FeCl ₃ 10% wt.ratio 1 : 10	600
KAAT /KMnO ₄ 10% /450	5	KMnO ₄ 10 % wt.ratio 1 : 10	450
KAAT / KMnO ₄ 10% /600	6	KMnO ₄ 10 % wt.ratio 1 : 10	600
KAAT /KSCN 10%/450 ⁰ C	7	KSCN 10% wt.ratio 1 · 10	450
KAAT /KSCN 10%/600	8	KSCN 10% wt.ratio 1: 10	600
KAAT /KOH 10%/450	9	KOH 10% wt.ratio 1 : 10	450
KAAT / KOH 10%/600	10	KOH 10% wt.ratio 1 : 10	600
KAAT /Na ₂ S ₂ O ₃ 10% /450	11	Na ₂ S ₂ O ₃ 10% wt.ratio 1 : 10	450
KAAT / Na ₂ S ₂ O ₃ 10% /600	12	$Na_2S_2O_3$ 10% wt.ratio 1 : 10	600

2. Karakterisasi Produk KAAT 2.1 Data Uji Derajat Kristanilitas KAAT

Pengujian kristanilisasi karbon aktif ampas tebu menggunakan perhitungan untuk uji derajat kristalinitas ditentukan berdasarkan persamaan berikut : (Sumber : [10][11] :

Rumus : $X = \frac{l_{112} - l_0}{l_{112}} x 100\%$ (1)

Keterangan : X = Derajat Kristalinitas (%); $I_{\overline{112}} = Intensitas Puncak$; $l_0 = Intensitas$ Minimum dari $I_{\overline{112}}$.

2.2 Data Uji Derajat Kristanilitas KAAT

Interpretasi Data Ukuran Kristal Karbon Aktif Ampas Tebu (KAAT) menggunakan formula Scherrer dengan persamaan di bawah ini [10][11]:

Rumus :
$$t_{(hkl)=\frac{0,9\lambda}{Bcos\theta}}$$
 (2)

Dimana: t = Ukuran Kristal (nm) ; λ = panjang gelombang sinar x (nm) ; B = FWHM (Full Width at Half Maximum) dalam radian ; θ = Setengan Sudut Difraksi

HASIL DAN PEMBAHASAN

Karbon aktif berbasis ampas tebu (KAAT) yang dihasilkan dengan menggunakan berbagai variasi activator yakni H_3PO_4 10%, FeCl₃ 10%, KMnO₄ 10%, KOH 10%, Na₂S₂O3 10% dan KSCN 10% dikarakterisasi ukuran derajat kristanilitas dan parameter kisi. Berikut produk karbon aktif ampas tebu yang dihasilkan ditunjukkan pada Gambar 2.

Gambar 2. Produk karbon Aktif Ampas Tebu

3.1 Data Pengujian Derajat Kristanilitas KAAT

Data difraktogram XRD karbon aktif ampas tebu pada suhu karbonasi 400^{0} C dan 600^{0} C dengan variasi zat pengaktivasi H₃PO₄10%, FeCl₃10%, KOH 10%, KMnO₄ 10%, KSCN 10%, Na₂S₂O₃ 10% ditunjukkan pada Gambar 3.

Gambar 3. Grafik Difragtogram XRD Karbon Aktif

Tabel 2. Data Difragtogram XRD untuk karbon aktif KOH 450^oC

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	\sin^2_{θ}	h k l
1	20,90 22	10,4 51	1,5406	0,18 1	0,03 3	110
2	26,34 8	13,1 74	1,5406	0,22 8	0,05 2	111

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{\alpha} \alpha^{2} + C\sum_{\alpha} \alpha \delta = \sum_{\alpha} \alpha \sin^{2} \theta$$
$$A\sum_{\alpha} \alpha \delta + C\sum_{\alpha} \delta^{2} = \sum_{\alpha} \delta \sin^{2} \theta$$
Dengan : $\alpha = h^{2} + k^{2} + l^{2} \operatorname{dan} \delta = 10 \sin 2\theta$

Tabel 3. Perhitungan Data Parameter Kisi karbon aktif KOH 450° C

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1	2	1,2 73	4	2,5 46	1,6 20	0,066	0,042
2	3	1,9 70	9	5,9 09	3,8 80	0,156	0,102

Dari Tabel didapat nilai Konstanta A = 0,016Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 6,089 \text{ nm}$$

Tabel 4. Data Difragtogram XRD untuk karbon aktif KOH $600^{\rm O}{\rm C}$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \theta$	h k l
1	26,6 209	13, 310	1,5406	0,2 30	0,0 53	110
2	28,0 283	14, 014	1,5406	0,2 42	0,0 59	101
3	30,4 187	15, 209	1,5406	0,2 62	0,0 69	111

Data persyaratan untuk analitik Cohen sebagai berikut:

 $A\sum_{A} \alpha^{2} + C\sum_{A} \alpha\delta = \sum_{A} \alpha \sin^{2}\theta$ $A\sum_{A} \alpha\delta + C\sum_{A} \delta^{2} = \sum_{A} \delta \sin^{2}\theta$ $Dengan : \alpha = h^{2} + k^{2} + l^{2} dan \delta = 10 sin 2\theta$

Tabel 5. Perhitungan Data Parameter Kisi karbon aktif KOH 600° C

Pun	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
cak							
1	r	2,0	4	4,0	4,0		
	2	08	4	16	31	0,106	0,106
2	\mathbf{r}	2,2	4	4,4	4,8		
	2	08	4	16	76	0,117	0,129
3	3	2,5	0	7,6	6,5		
	5	64	9	91	72	0,206	0,176

Dari Tabel didapat nilai Konstanta A = 0,027Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 4,688 \text{ nm}$$

Tabel 6. Data Difragtogram XRD untuk karbon aktif $\rm H_3PO_4~450^{0}C$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	\sin^2_{θ}	h k l
1	24,2 53	12, 127	1,5406	0,2 10	0,0 44	110
2	26,7 242	13, 362	1,5406	0,2 31	0,0 53	110
3	52,6 328	26, 316	1,5406	0,4 43	0,1 97	221

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{\alpha} \alpha^{2} + C\sum_{\alpha} \alpha \delta = \sum_{\alpha} \alpha \sin^{2} \theta$$
$$A\sum_{\alpha} \alpha \delta + C\sum_{\alpha} \delta^{2} = \sum_{\alpha} \delta \sin^{2} \theta$$
$$Dengan : \alpha = h^{2} + k^{2} + l^{2} dan \delta = 10 sin 2\theta$$

Tabel 7. Perhitungan Data Parameter Kisi karbon aktif $\rm H_3PO_4~450^{0}C$

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2\theta$	$\delta sin^2 \theta$
1		1,6	4	3,3	2,8		
	2	87		75	47	0,088	0,074
2		2,0	4	4,0	4,0		
	2	22		45	90	0,107	0,108
3		6,3	8	56,	39,		
	9	16	1	848	898	1,769	1,241

Dari Tabel didapat nilai Konstanta A = 0,022 Sehingga didapat parameter kisi sebesar : $\alpha = \sqrt{\frac{\lambda^2}{4A}} = 5,193 \text{ nm}$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \\ \theta$	h k l
1	26,6 046	13, 302	1,5406	0,2 30	0,0 53	110
2	28,0 439	14, 022	1,5406	0,2 42	0,0 59	110
3	34,6 188	17, 309	1,5406	0,2 98	0,0 89	111

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{\alpha} \alpha^{2} + C\sum_{\alpha} \alpha \delta = \sum_{\alpha} \alpha \sin^{2} \theta$$
$$A\sum_{\alpha} \alpha \delta + C\sum_{\alpha} \delta^{2} = \sum_{\alpha} \delta \sin^{2} \theta$$
Dengan : $\alpha = h^{2} + k^{2} + l^{2} \operatorname{dan} \delta = 10 \sin 2\theta$

Tabel 9. Perhitungan Data Parameter Kisi karbon aktif $H_3PO_4 600^{\circ}C$

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1	ſ	2,0	4	4,0	4,0		
	2	06	4	11	22	0,106	0,106
2	\mathbf{r}	2,2	4	4,4	4,8		
	Ζ	10	4	21	86	0,117	0,130
3	3	3,2	0	9,6	10,		
	5	28	9	83	417	0,266	0,286

Dari Tabel didapat nilai Konstanta A = 0,026Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 4,777 \text{ nm}$$

Tabel 10. Data Difragtogram XRD untuk karbon aktif $Na_2S_2O_3$ 450 °C

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \theta$	h k l
1	26,7 607	13, 380	1,5406	0,2 31	0,0 54	110
2	29,8 666	14, 933	1,5406	0,2 58	0,0 66	110
3	41,9 225	20, 961	1,5406	0,3 58	0,1 28	210

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum \alpha^2 + C\sum \alpha\delta = \sum \alpha sin^2\theta$$

$$A\sum \alpha\delta + C\sum \delta^2 = \sum \delta sin^2\theta$$

Dengan : $\alpha = h^2 + k^2 + l^2 \operatorname{dan} \delta = 10 \sin 2\theta$

Tabel 11. Perhitungan Data Parameter Kisi karbon aktif $Na_2S_2O_3$ 450 °C

		2-2-3		-			
Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1		2,0	4	4,0	4,1		
	2	27	4	55	10	0,107	0,109
2		2,4	4	4,9	6,1		
	2	80	4	60	50	0,133	0,165
3		4,4	2	22,	19,		
	5	64	5	320	926	0,640	0,571

Dari Tabel didapat nilai Konstanta A = 0,027Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 4,688 \text{ nm}$$

Tabel 12. Data Difragtogram XRD untuk karbon aktif $Na_2S_2O_3$ 600 °C

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \\ \theta$	h k l
1	27,03 36	13,5 17	1,5406	0,23 4	0,05 5	110
2	43,56 47	21,7 82	1,5406	0,37 1	0,13 8	210
3	49,02 34	24,5 12	1,5406	0,41 5	0,17 2	211

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{i} \alpha^{2} + C\sum_{i} \alpha\delta = \sum_{i} \alpha \sin^{2}\theta$$
$$A\sum_{i} \alpha\delta + C\sum_{i} \delta^{2} = \sum_{i} \delta \sin^{2}\theta$$
$$Dengan : \alpha = h^{2} + k^{2} + l^{2} dan \delta = 10 sin 2\theta$$

Tabel 13. Perhitungan Data Parameter Kisi karbon aktif $Na_2S_2O_3\ 600\ ^{o}C$

Pun	a	δ	α^2	Aδ	δ^2	asin ² A	$\delta sin^2 \theta$	
cak	u	0	u	110	0	usin v	05111 0	
1		2,0	4	4,1	4,2	0 100	0.113	
	2	66	4	32	68	0,109	0,115	
2		4,7	2	23,	22,	0 690	0 65 1	
	5	50	5	748	559	0,089	0,054	
3		5,7	3	34,	32,	1 022	0.001	
	6	00	6	199	489	1,055	0,981	

Dari Tabel didapat nilai Konstanta A = 0,027

Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 4,688 \text{ nm}$$

Tabel 14. Data Difragtogram XRD untuk karbon aktif KMnO4 450 $^{\circ}\mathrm{C}$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \\ \theta$	h k l
1	36,29 66	18,1 48	1,5406	0,31 1	0,09 7	110

Data persyaratan untuk analitik Cohen sebagai berikut:

$A\sum \alpha^2 + C\sum \alpha\delta = \sum \alpha sin^2\theta$
$A\sum_{i}\alpha\delta + C\sum_{i}\delta^{2} = \sum_{i}\delta sin^{2}\theta$
Dengan : $\alpha = h^2 + k^2 + l^2 \operatorname{dan} \delta = 10 \sin 2\theta$

Tabel 15. Perhitungan Data Parameter Kisi karbon aktif KMnO4 450 $^{\rm o}{\rm C}$

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1	2	3,5 04	4	7,0 08	1,3 94	0,194	0,340

Dari Tabel didapat nilai Konstanta A = 0,049Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 3,479 \text{ nm}$$

Tabel 16. Data Difragtogram XRD untuk karbon aktif KMnO4 600 $^{\circ}\mathrm{C}$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \theta$	h k l
1	33,3 279	16, 664	1,5406	0,2 87	0,0 82	110
2	35,7 933	17, 897	1,5406	0,3 07	0,0 94	110
3	62,7 81	31, 391	1,5406	0,5 21	0,2 71	211

Data persyaratan untuk analitik Cohen sebagai berikut:

Tabel 17. Perhitungan Data Parameter Kisi karbon aktif KMnO4 600 $^{\rm o}{\rm C}$

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$	
1	2	3,0	4	6,0	9,1	0.164	0.248	
	-	19		37	13	0,101	0,210	
2	2	3,4	4	6,8	11,	0 189	0 323	
	4	21		41	701	0,109	0,525	
3	7	7,9	4	55,	62,	1 200	2 1 4 5	
	/	08	9	355	535	1,099	2,143	

Dari Tabel didapat nilai Konstanta A = 0,041Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 3,804 \text{ nm}$$

Tabel 18. Data Difragtogram XRD untuk karbon aktif KSCN 450 $^{\circ}\mathrm{C}$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \theta$	h k l
1	30,2 573	15, 129	1,5406	0,2 61	0,0 68	110
2	33,2 055	16, 603	1,5406	0,2 86	0,0 82	110
3	35,6 385	17, 819	1,5406	0,3 06	0,0 94	111

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{i} \alpha^{2} + C\sum_{i} \alpha\delta = \sum_{i} \alpha \sin^{2}\theta$$
$$A\sum_{i} \alpha\delta + C\sum_{i} \delta^{2} = \sum_{i} \delta \sin^{2}\theta$$
$$Dengan : \alpha = h^{2} + k^{2} + l^{2} dan \delta = 10 sin 2\theta$$

Tabel 19. Perhitungan	Data	Parameter	Kisi	karbon
aktif KSCN 450 °C				

			00 0				
Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1	2	2,5	4	5,0	6,4	0,136	0,173
		39		/8	46		
2	2	2,9	4	5,9	8,9	0 163	0 245
	2	99		98	95	0,105	0,215
3	3	3,3	9	10,	11,	0.281	0.218
	3	95		185	526	0,201	0,318

Dari Tabel didapat nilai Konstanta A = 0,034Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 4,178 \text{ nm}$$

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \\ \theta$	h k l
1	32,5 438	16, 272	1,5406	0,2 80	0,0 79	110
2	36,2 377	18, 119	1,5406	0,3 11	0,0 97	110
3	44,5 542	22, 277	1,5406	0,3 79	0,1 44	200

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{\alpha} \alpha^{2} + C\sum_{\alpha} \alpha \delta = \sum_{\alpha} \alpha \sin^{2} \theta$$
$$A\sum_{\alpha} \alpha \delta + C\sum_{\alpha} \delta^{2} = \sum_{\alpha} \delta \sin^{2} \theta$$
Dengan : $\alpha = h^{2} + k^{2} + l^{2} \operatorname{dan} \delta = 10 \sin 2\theta$

Tabel 21. Perhitungan Data Parameter Kisi karbon aktif KSCN 600 $^{\rm o}{\rm C}$

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1	2	2,8 94	4	5,7 88	8,3 74	0,157	0,227
2	2	3,4 94	4	6,9 89	12, 211	0,193	0,338
3	4	4,9 22	1 6	19, 689	24, 228	0,575	0,707

Dari Tabel didapat nilai Konstanta A = 0,039Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 3,901 \text{ nm}$$

Tabel 22. Data Difragtogram XRD untuk karbon aktif FeCl $_3$ 450 °C

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \theta$	h k l
1	26,6 168	13, 308	1,5406	0,2 30	0,0 53	100
2	27,9 39	13, 970	1,5406	0,2 41	0,0 58	100
3	29,7 018	14, 851	1,5406	0,2 56	0,0 66	100

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum \alpha^2 + C\sum \alpha\delta = \sum \alpha \sin^2\theta$$

$$A\sum \alpha\delta + C\sum \delta^2 = \sum \delta sin^2\theta$$

Dengan : $\alpha = h^2 + k^2 + l^2 \operatorname{dan} \delta = 10 \sin 2\theta$

Tabel 23. Perhitungan Data Parameter Kisi karbon aktif FeCl₃ 450 $^{\rm o}{\rm C}$

		5					
Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2 \theta$	$\delta sin^2 \theta$
1	1	2,0	1	2,0	4,0	0.053	0.106
		07		07	29	-,	-,
2	1	2,1	1	2,1	4,8	0.058	0.128
	1	95		95	19	0,058	0,128
3	1	2,4	1	2,4	6,0	0.066	0 161
	1	55		55	27	0,000	0,101

Dari Tabel didapat nilai Konstanta A = 0,053Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 3,346 \text{ nm}$$

Tabel 24. Data Difragtogram XRD untuk karb	on
aktif FeCl ₃ 600 °C	

Pun cak	2 θ(°)	θ(°)	λ (angstr om)	sin θ	$\sin^2 \theta$	h k l
1	26,5 562	13, 278	1,5406	0,2 30	0,0 53	100
2	62,8 833	31, 442	1,5406	0,5 22	0,2 72	210

Data persyaratan untuk analitik Cohen sebagai berikut:

$$A\sum_{A} \alpha^{2} + C\sum_{A} \alpha\delta = \sum_{A} \alpha \sin^{2}\theta$$
$$A\sum_{A} \alpha\delta + C\sum_{A} \delta^{2} = \sum_{A} \delta \sin^{2}\theta$$
$$Dengan : \alpha = h^{2} + k^{2} + l^{2} dan \delta = 10 sin 2\theta$$

Tabel 25. Perhitungan Data Parameter Kisi karbon aktif FeCl $_3$ 600 °C

Pun cak	α	δ	α^2	Αδ	δ^2	$\alpha sin^2\theta$	$\delta sin^2 \theta$
1	1	1,9 99	1	1,9 99	3,9 95	0,053	0,105
2	5	7,9 22	2 5	39, 612	62, 765	1,360	2,156

Dari Tabel didapat nilai Konstanta A = 0,053Sehingga didapat parameter kisi sebesar :

$$\alpha = \sqrt{\frac{\lambda^2}{4A}} = 3,346 \text{ nm}$$

Berdasarkan data pada Tabel 2-25, untuk interpretasi data ukuran kristal karbon aktif

ampas tebu (KAAT) menggunakan formula Scherrer dengan persamaan (a) maka dihasilkan data sesuai pada Tabel 26:

Tabel 26. Interpretasi Data Derajat Kristanilitas Karbon Aktif Ampas Tebu (KAAT)

No	Kode Sampel	λ	FWHM (B)	θ	t (hkl) (nm)
1	KAAT/K OH 10% / 450 °C	1,54 06	0,2448	11,8 12	7,768 662
2	KAAT/K OH 10% / 600 °C	1,54 06	0,5406	16,1 87	- 2,890 3
3	KAAT/H ₃ PO ₄ 10% / 450 °C	1,54 06	0,3468	20,7 01	- 14,42 53
4	KAAT/H ₃ PO ₄ 10% / 600 °C	1,54 06	0,352	13,6 56	55,84 664
5	KAAT/N a ₂ S ₂ O ₃ 10% / 450 °C	1,54 06	0,3944	20,1 43	12,82 218
6	KAAT/N a ₂ S ₂ O ₃ 10% / 600 °C	1,54 06	0,4488	21,3 06	- 3,988 63
7	KAAT/K MnO ₄ 10% / 450 °C	1,54 06	0,4896	18,1 48	3,706 629
8	KAAT/K MnO ₄ 10% / 600 °C	1,54 06	0,476	21,9 84	- 2,912 98
9	KAAT/K SCN 10% / 450 °C	1,54 06	0,5467 2	22,5 893 8	- 3,069 11
10	KAAT/K SCN 10% / 600 °C	1,54 06	0,6256	18,8 89	2,218 086
11	KAAT/F eCl ₃ 10% / 450 °C	1,54 06	0,3835 2	19,4 31	4,326 228
12	KAAT/F eCl ₃ 10% / 600 °C	1,54 06	0,4896	22,3 60	- 3,036 05

3.2 Interpretasi Data Ukuran Kristal KAAT

Pengujian Derajat Kristanilisasi ditentukan berdasarkan persamaan (b),

menghasilkan da	ata seba	igai berikut	t (Tabel	27):
(Zhang et al., 20	14)			

(ZIIč	ing et al., 2014)			
No	Kode Sampel	IP	IM (lo)	DK (X)
		$(I\overline{1}1_2)$		(%)
1	KAAT/KOH 10% / 450 °C	100	41,07	58,93
2	KAAT/KOH 10% / 600 °C	100	19,3	80,7
3	KAAT/H ₃ PO ₄ 10% / 450 °C	100	5,21	94,79
4	KAAT/H ₃ PO ₄ 10% / 600 °C	100	15,13	84,87
5	KAAT/Na ₂ S ₂ O ₃ 10% / 450 °C	100	15,73	84,27
6	KAAT/Na ₂ S ₂ O ₃ 10% / 600 °C	100	23,22	76,78
7	KAAT/KMnO ₄ 10% / 450 °C	100	0	100
8	KAAT/KMnO ₄ 10% / 600 °C	100	19,6	80,4
9	KAAT/KSCN 10% / 450 °C	100	19,92	80,08
10	KAAT/KSCN 10% / 600 °C	100	43,12	56,88
11	KAAT/FeCl ₃ 10% / 450 °C	100	16,36	83,64
12	KAAT/FeCl ₃ 10% / 600 °C	100	16,61	83,39

IP = Intensitas Puncak; IM = Intensitas Minimum; DK = Derajat Kristalinitas

KESIMPULAN

Interpretasi data derajat kristanilitas karbon aktif ampas tebu menggunakan variasi aktivator yakni KOH 10%, H₃PO₄ 10%, Na₂S₂O3 10%, KMnO₄ 10%, KSCN 10% dan FeCl₃ 10%, Untuk pengujian derajat menghasilkan kristalinitas nilai derajat kristalinitas masing-masing aktivator KOH 10%, H₃PO₄ 10%, Na₂S₂O3 10%, KMnO₄ 10%, KSCN 10% dan FeCl₃ 10% pada suhu 450°C berturut-turut adalah 58,93%, 94,79%, 84,27%, 100%, 80,08% dan 83,64%, sedangkan pada suhu 600°C berturut-turut adalah 80,7%, 84,87%, 76,78%, 80,4%, 56,88% dan 83,39%.

DAFTAR RUJUKAN

- Ahiduzzaman, M., & Islam, A. K. M. S. (2016). Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. *SpringerPlus*, 5(1), 1–14.
- Doczekalska, B., Bartkowiak, M., Orszulak, G., & Katolik, Z. (2015). Activated carbons

from plant materials. *Annals of Warsaw University of Life Sciences-SGGW*. *Forestry and Wood Technology*, 92.

- González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. *Renewable and Sustainable Energy Reviews*, 82, 1393–1414.
- Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—a review. *Renewable and Sustainable Energy Reviews*, 11(9), 1966–2005.
- Kharat, D. S. (2015). Preparing agricultural residue based adsorbents for removal of dyes from effluents-a review. *Brazilian Journal of Chemical Engineering*, *32*(1), 1–12.
- Kyzas, G. Z., & Deliyanni, E. A. (2015). Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. *Chemical Engineering Research and Design*, 97, 135–144.
- Purnama, E. F., Nikmatin, S., & Langenati, R. (2019). Pengaruh Suhu Reaksi Terhadap Derajat Kristalinitas Dan Komposisi Hidroksiapatit Dibuat Dengan Mediaair Dan Cairan Tubuh Buatan (Synthetic Body Fluid). Jurnal Sains Materi Indonesia, 154–159.
- Sarker, T. C., Azam, S. M. G. G., Abd El-Gawad, A. M., Gaglione, S. A., & Bonanomi, G. (2017). Sugarcane bagasse: a potential low-cost biosorbent for the removal of hazardous materials. *Clean Technologies and Environmental Policy*, 19(10), 2343–2362.
- Solechan, A. (2001). Pengukuran Derajat Kristalinitas Tulang Tikus Pada Berbagai Umur Dengan XRD [Skipsi]. Depok: Universitas Indonesia.
- Ukanwa, K. S., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S. (2019). A review of chemicals to produce activated carbon from agricultural waste biomass. *Sustainability*, *11*(22), 6204.
- Zhang, Z., Qu, Y., Guo, Y., Wang, Z., & Wang, X. (2014). A novel route for preparation of high-performance porous carbons from hydrochars by KOH activation. *Colloids* and Surfaces A: Physicochemical and Engineering Aspects, 447, 183–187.